Classifying complements for Hopf algebras and Lie algebras

被引:14
|
作者
Agore, A. L. [1 ]
Militaru, G. [2 ]
机构
[1] Vrije Univ Brussel, Fac Engn, B-1050 Brussels, Belgium
[2] Univ Bucharest, Fac Math & Comp Sci, RO-010014 Bucharest 1, Romania
关键词
Complements; Bicrossed products; Deformations of a Hopf algebra/Lie algebra; EXTENSIONS; PRODUCTS;
D O I
10.1016/j.jalgebra.2013.06.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A subset of E be a given extension of Hopf (respectively Lie) algebras. We answer the classifying complements problem (CCP) which consists of describing and classifying all complements of A in E. If H is a given complement then all the other complements are obtained from H by a certain type of deformation. We establish a bijective correspondence between the isomorphism classes of all complements of A in E and a cohomological type object HA(2) (H, A vertical bar((sic), (sic))), where ((sic), (sic)) is the matched pair associated to H. The factorization index [E: A](f) is introduced as a numerical measure of the (CCP). For two n-th roots of unity we construct a 4n(2)-dimensional Hopf algebra whose factorization index over the group algebra is arbitrary large. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:193 / 208
页数:16
相关论文
共 50 条