A Galerkin least squares method for time harmonic Maxwell equations using Nedelec elements

被引:7
|
作者
Jagalur-Mohan, J. [1 ]
Feijoo, G. [2 ]
Oberai, A. [1 ]
机构
[1] Rensselaer Polytech Inst, Troy, NY 12180 USA
[2] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
关键词
Time-harmonic Maxwell's equations; Nedelec edge element; Stabilized finite element method; Galerkin least-squares method; PERFECTLY MATCHED LAYER; DISPERSION;
D O I
10.1016/j.jcp.2012.10.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A Galerkin least squares finite element method for the solution of the time-harmonic Maxwell's equations using Nedelec elements is proposed. This method appends a least-squares term, evaluated within element interiors, to the standard Galerkin method. For the case of lowest order hexahedral element, the numerical parameter multiplying this term is determined so as to optimize the dispersion properties of the resulting formulation. In particular, explicit expressions for this parameter are derived that lead to methods with no dispersion error for propagation along a specified direction and reduced dispersion error over all directions. It is noted that this method is easy to implement and does not add to the computational costs of the standard Galerkin method. The performance of this method is tested on problems of practical interest. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:67 / 81
页数:15
相关论文
共 50 条
  • [2] A discontinuous least squares finite element method for time-harmonic Maxwell equations
    Li, Ruo
    Liu, Qicheng
    Yang, Fanyi
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (01) : 817 - 839
  • [3] A negative-norm least-squares method for time-harmonic Maxwell equations
    Copeland, Dylan M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) : 303 - 317
  • [4] A VARIANT OF THE PLANE WAVE LEAST SQUARES METHOD FOR THE TIME-HARMONIC MAXWELL'S EQUATIONS
    Hu, Qiya
    Song, Rongrong
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (01): : 85 - 103
  • [5] OPTIMAL ERROR ESTIMATES FOR NEDELEC EDGE ELEMENTS FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Gabriel Wittum
    Journal of Computational Mathematics, 2009, (05) : 563 - 572
  • [6] OPTIMAL ERROR ESTIMATES FOR NEDELEC EDGE ELEMENTS FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Zhong, Liuqiang
    Shu, Shi
    Wittum, Gabriel
    Xu, Jinchao
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (05) : 563 - 572
  • [7] Saddle point least squares iterative solvers for the time harmonic Maxwell equations
    Bacuta, Constantin
    Jacavage, Jacob
    Qirko, Klajdi
    Sayas, Francisco-Javier
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (11) : 2915 - 2928
  • [8] Dispersion analysis of Galerkin least squares approximations of Maxwell's equations
    Bergström, R
    Larson, MG
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 748 - 752
  • [9] A PLANE-WAVE LEAST-SQUARES METHOD FOR TIME-HARMONIC MAXWELL'S EQUATIONS IN ABSORBING MEDIA
    Hu, Qiya
    Yuan, Long
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (04): : A1937 - A1959
  • [10] Solution of the time-harmonic, Maxwell equations using discontinuous Galerkin methods
    Dolean, V.
    Fol, H.
    Lanteri, S.
    Perrussel, R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) : 435 - 445