Lower bounds for spherical designs

被引:18
|
作者
Yudin, VA [1 ]
机构
[1] MOSCOW ENERGY INST,MOSCOW,RUSSIA
关键词
D O I
10.1070/IM1997v061n03ABEH000132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new lower bound is obtained for the cardinality of spherical designs. In its dependence on dimension it improves the well-known bound of Delsarte by an exponential factor as the degree of the design tends to infinity.
引用
收藏
页码:673 / 683
页数:11
相关论文
共 50 条
  • [1] Universal upper and lower bounds on energy of spherical designs
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2015, 8 : 51 - 65
  • [2] Optimal asymptotic bounds for spherical designs
    Bondarenko, Andriy
    Radchenko, Danylo
    Viazovska, Maryna
    ANNALS OF MATHEMATICS, 2013, 178 (02) : 443 - 452
  • [3] Bounds on antipodal spherical designs with few angles
    Xu, Zhiqiang
    Xu, Zili
    Yu, Wei-Hsuan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03):
  • [4] On linear programming bounds for spherical codes and designs
    Samorodnitsky, A
    DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 31 (03) : 385 - 394
  • [5] On Linear Programming Bounds for Spherical Codes and Designs
    Alex Samorodnitsky
    Discrete & Computational Geometry, 2004, 31 : 385 - 394
  • [6] Lower bounds for group covering designs
    Chanduka, KKP
    Bhandari, MC
    Lal, AK
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 1999, 1719 : 334 - 345
  • [7] Some lower bounds of centered -discrepancy of designs and their complementary designs
    Ou, Zujun
    Qin, Hong
    Li, Hongyi
    STATISTICAL PAPERS, 2015, 56 (04) : 969 - 979
  • [8] LINEAR PROGRAMMING BOUNDS FOR SPHERICAL (k, k)-DESIGNS
    Boyvalenkov, Peter G.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2020, 73 (08): : 1051 - 1059
  • [9] Linear Programming Bounds for Covering Radius of Spherical Designs
    Peter Boyvalenkov
    Maya Stoyanova
    Results in Mathematics, 2021, 76
  • [10] EXTREMAL POLYNOMIALS FOR OBTAINING BOUNDS FOR SPHERICAL CODES AND DESIGNS
    BOYVALENKOV, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 14 (02) : 167 - 183