Dual Feynman transform for modular operads

被引:0
|
作者
Chuang, J. [1 ]
Lazarev, A. [2 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[2] IHES, F-91440 Bures Sur Yvette, France
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and study the notion of a dual Feynman transform of a smodular operad. This generalizes and gives a conceptual explanation of Kontsevich's dual construction producing graph cohomology classes from a contractible differential graded Frobenius algebra. The dual Feynman transform of a modular operad is indeed linear dual to the Feynman transform introduced by Getzler and Kapranov when evaluated on vacuum graphs. In marked contrast to the Feynman transform, the dual notion admits an extremely simple presentation via generators and relations; this leads to an explicit and easy description of its algebras. We discuss a further generalization of the dual Feynman transform whose algebras are not necessarily contractible. This naturally gives rise to a two-colored graph complex analogous to the Boardman-Vogt topological tree complex.
引用
收藏
页码:605 / 649
页数:45
相关论文
共 50 条
  • [1] Modular operads
    Getzler, E
    Kapranov, MM
    COMPOSITIO MATHEMATICA, 1998, 110 (01) : 65 - 126
  • [2] FROM OPERADS AND PROPS TO FEYNMAN PROCESSES
    Ionescu, Lucian M.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2007, 7 (02): : 261 - 283
  • [3] REGULAR PATTERNS, SUBSTITUDES, FEYNMAN CATEGORIES AND OPERADS
    Batanin, Michael
    Kock, Joachim
    Weber, Mark
    THEORY AND APPLICATIONS OF CATEGORIES, 2018, 33 : 148 - 192
  • [4] Modular operads of embedded curves
    Kondo, Satoshi
    Siegel, Charles
    Wolfson, Jesse
    GEOMETRY & TOPOLOGY, 2017, 21 (02) : 903 - 922
  • [5] Modular operads and the nerve theorem
    Hackney, Philip
    Robertson, Marcy
    Yau, Donald
    ADVANCES IN MATHEMATICS, 2020, 370
  • [6] A graphical category for higher modular operads
    Hackney, Philip
    Robertson, Marcy
    Yau, Donald
    ADVANCES IN MATHEMATICS, 2020, 365
  • [7] Modular envelopes, OSFT and nonsymmetric (non-Σ) modular operads
    Markl, Martin
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2016, 10 (02) : 775 - 809
  • [8] The semi-classical approximation for modular operads
    Getzler, E
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 194 (02) : 481 - 492
  • [9] The Semi-Classical Approximation for Modular Operads
    E. Getzler
    Communications in Mathematical Physics, 1998, 194 : 481 - 492
  • [10] MODULAR OPERADS AS MODULES OVER THE BRAUER PROPERAD
    Stoll, Robin
    THEORY AND APPLICATIONS OF CATEGORIES, 2022, 38 : 1538 - 1607