Niobium-Doped Titanium Dioxide with High Dopant Contents for Enhanced Lithium-Ion Storage

被引:21
|
作者
Xu, Wenlei [1 ,2 ]
Russo, Patricia A. [1 ,2 ]
Schultz, Thorsten [2 ,3 ,4 ]
Koch, Norbert [2 ,3 ,4 ]
Pinna, Nicola [1 ,2 ]
机构
[1] Humboldt Univ, Inst Chem, Brook Taylor Str 2, D-12489 Berlin, Germany
[2] Humboldt Univ, IRIS Adlershof, Brook Taylor Str 2, D-12489 Berlin, Germany
[3] Humboldt Univ, Inst Phys, Brook Taylor Str 2, D-12489 Berlin, Germany
[4] Helmholtz Zentrum Mat & Energie GmbH, Albert Einstein Str 15, D-12489 Berlin, Germany
关键词
Nb-doped TiO2; high Nb content; enhanced electronic conductivity; anode materials; lithium-ion storage; ELECTROCHEMICAL ENERGY-STORAGE; PERFORMANCE ANODE MATERIAL; TIO2; NANOPARTICLES; ANATASE TIO2; INTERCALATION; INSERTION; SURFACE; DESIGN; IMPACT; FILMS;
D O I
10.1002/celc.202001040
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Titanium dioxide is a promising anode for efficient lithium-ion storage in terms of low cost, good structural stability, and inherent safety. However, its performance in Li-ion storage is hindered by poor electronic conductivity. In this work, a solvothermal approach was applied for the synthesis of Nb-doped TiO(2)nanocrystals with Nb content up to 33 at. %. The enhanced electronic conductivity and favorable electrochemical kinetics led to superior specific capacity, rate capability, and cycling stability compared to pristine TiO2. For the optimum dopant content of 21 at. %, a specific capacity of 58 mAh g(-1)was reached at 10 A g(-1)compared to just 28 mAh g(-1)for pure TiO2, in addition to almost 20 % higher capacity retention after prolonged cycling. The strategy in the current work can be easily extended to the design of other high-performance electrode materials for energy storage.
引用
收藏
页码:4016 / 4023
页数:8
相关论文
共 50 条
  • [1] Niobium diffusion in niobium-doped titanium dioxide
    L. R. Sheppard
    A. J. Atanacio
    T. Bak
    J. Nowotny
    M. K. Nowotny
    K. E. Prince
    Journal of Solid State Electrochemistry, 2009, 13 : 1115 - 1121
  • [2] Niobium diffusion in niobium-doped titanium dioxide
    Sheppard, L. R.
    Atanacio, A. J.
    Bak, T.
    Nowotny, J.
    Nowotny, M. K.
    Prince, K. E.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2009, 13 (07) : 1115 - 1121
  • [3] Engineering Titanium Dioxide Nanostructures for Enhanced Lithium-Ion Storage
    Lee, Dae-Hyeok
    Lee, Byoung-Hoon
    Sinha, Arun K.
    Park, Jae-Hyuk
    Kim, Min-Seob
    Park, Jungjin
    Shin, Heejong
    Lee, Kug-Seung
    Sung, Yung-Eun
    Hyeon, Taeghwan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (48) : 16676 - 16684
  • [4] Niobium Segregation in Niobium-Doped Titanium Dioxide (Rutile)
    Atanacio, Armand J.
    Bak, Tadeusz
    Nowotny, Janusz
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (21): : 11174 - 11185
  • [5] Niobium Surface Segregation in Polycrystalline Niobium-Doped Titanium Dioxide
    Sheppard, L. R.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (07): : 3407 - 3413
  • [6] Application of secondary ion mass spectrometry in studies of niobium segregation in niobium-doped titanium dioxide
    Sheppard, L.R.
    Atanacio, A.J.
    Bak, T.
    Nowotny, J.
    Prince, K.E.
    Journal of the Australian Ceramic Society, 2007, 43 (02): : 92 - 97
  • [7] Effect of oxygen activity on niobium segregation in niobium-doped titanium dioxide
    Sheppard, L.R.
    Bak, T.
    Nowotny, J.
    Nowotny, M.K.
    Journal of the Australian Ceramic Society, 2008, 44 (02): : 42 - 46
  • [8] The Impact of Niobium Surface Segregation on Charge Separation in Niobium-Doped Titanium Dioxide
    Sheppard, L. R.
    Dittrich, T.
    Nowotny, M. K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (39): : 20923 - 20929
  • [9] Amorphous titanium dioxide and polyaniline dual modifying silicon for highly enhanced lithium-ion storage
    Shi, Wen-Hua
    Yin, Zhi-Wen
    Wang, Meng
    Liu, Jing
    Hu, Zhi-Yi
    Li, Bei
    Chen, Li-Hua
    Li, Yu
    Su, Bao-Lian
    CHEMICAL ENGINEERING JOURNAL, 2024, 497
  • [10] Transparent niobium-doped titanium dioxide thin films with high Seebeck coefficient for thermoelectric applications
    Ribeiro, J. M.
    Correia, F. C.
    Rodrigues, F. J.
    Reparaz, J. S.
    Goni, A. R.
    Tavares, C. J.
    SURFACE & COATINGS TECHNOLOGY, 2021, 425 (425):