Numerical integration based on bivariate quadratic spline quasi-interpolants on Powell-Sabin partitions

被引:10
|
作者
Sablonniere, P. [1 ]
Sbibih, D. [2 ]
Tahrichi, M. [2 ]
机构
[1] INSA Rennes, Rennes, France
[2] Univ Mohammed 1, Lab MATSI, Equipe ANTI URAC05, Ecole Super Technol, Oujda, Morocco
关键词
Cubature rule; Spline quasi-interpolant; Powell-Sabin spline; PRODUCT INTEGRATION;
D O I
10.1007/s10543-012-0391-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we generate and study new cubature formulas based on spline quasi-interpolants in the space of quadratic Powell-Sabin splines on nonuniform triangulations of a polygonal domain in a"e(2). By using a specific refinement of a generic triangulation, optimal convergence orders are obtained for some of these rules. Numerical tests are presented for illustrating the theoretical results.
引用
收藏
页码:175 / 192
页数:18
相关论文
共 50 条