Clustering based on the geodesic distance on Gaussian manifolds for the automatic classification of disruptions

被引:49
|
作者
Murari, A. [1 ]
Boutot, P. [2 ]
Vega, J. [3 ]
Gelfusa, M. [4 ]
Moreno, R. [3 ]
Verdoolaege, G. [5 ]
de Vries, P. C. [6 ]
机构
[1] Consorzio RFX Assoc URATOM ENEA Fus, I-35127 Padua, Italy
[2] Ecole Polytech Palaiseau, Paris, France
[3] Asociac EURATOM CIEMAT Fus, Madrid 28040, Spain
[4] Univ Roma Tor Vergata, Assoc EURATOM ENEA, Rome, Italy
[5] Univ Ghent, Dept Appl Phys, B-9000 Ghent, Belgium
[6] EURATOM, FOM Inst DIFFER, NL-3430 BE Nieuwegein, Netherlands
关键词
PREDICTION;
D O I
10.1088/0029-5515/53/3/033006
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Over the last few years progress has been made on the front of disruption prediction in tokamaks. The less forgiving character of the new metallic walls at JET emphasized the importance of disruption prediction and mitigation. Being able not only to predict but also classify the type of disruption will enable one to better choose the appropriate mitigation strategy. From this perspective, a new clustering method, based on the geodesic distance on a probabilistic manifold, has been applied to the JET disruption database. This approach allows the error bars of the measurements to be taken into account and has proved to clearly outperform the more traditional classification methods based on the Euclidean distance. The developed technique with the highest success rate manages to identify the type of disruption with 85% confidence, several hundreds of ms before the thermal quench. Therefore, the combined use of this method and the more traditional disruption predictors would significantly improve the mitigation strategy on JET and could contribute to the definition of an optimized approach for ITER.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Geodesic distance on Gaussian manifolds for the robust identification of chaotic systems
    Craciunescu, T.
    Murari, A.
    NONLINEAR DYNAMICS, 2016, 86 (01) : 677 - 693
  • [2] Geodesic distance on Gaussian manifolds for the robust identification of chaotic systems
    T. Craciunescu
    A. Murari
    Nonlinear Dynamics, 2016, 86 : 677 - 693
  • [3] Geodesic distance based fuzzy clustering
    Feil, Balazs
    Abonyi, Janos
    SOFT COMPUTING IN INDUSTRIAL APPLICATIONS: RECENT AND EMERGING METHODS AND TECHNIQUES, 2007, 39 : 50 - +
  • [4] Geodesic distance based SOM for image clustering
    Shi, Chunqi
    Zhang, Sulan
    Zheng, Zheng
    Shi, Zhongzhi
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 2483 - 2488
  • [5] Geodesic Distance on Gaussian Manifolds to Reduce the Statistical Errors in the Investigation of Complex Systems
    Lungaroni, Michele
    Murari, Andrea
    Peluso, Emmanuele
    Gaudio, Pasqualino
    Gelfusa, Michela
    COMPLEXITY, 2019, 2019
  • [6] GAUSSIAN AND GEODESIC CURVATURE OF RIEMANNIAN MANIFOLDS
    RUMMLER, H
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1974, 26 (03): : 629 - 635
  • [7] Unsupervised Classification of Polarimetric SAR Image Based on Geodesic Distance and Non-Gaussian Distribution Feature
    Qu, Junrong
    Qiu, Xiaolan
    Ding, Chibiao
    Lei, Bin
    SENSORS, 2021, 21 (04) : 1 - 13
  • [8] A Genetic Algorithm Based Clustering Using Geodesic Distance Measure
    Li, Gang
    Zhuang, Jian
    Hou, Hongning
    Yu, Dehong
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 1, 2009, : 274 - 278
  • [9] Multiscale cortical parcellation based on geodesic distance and hierarchical clustering
    Prieto, Yarelis
    Molina, Joaquin
    Otero, Monica
    Mangin, Jean-Francois
    Hernandez, Cecilia
    El-Deredy, Wael
    Guevara, Pamela
    2023 19TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, SIPAIM, 2023,
  • [10] Detection of Causal Relations in Time Series Affected by Noise in Tokamaks Using Geodesic Distance on Gaussian Manifolds
    Murari, Andrea
    Craciunescu, Teddy
    Peluso, Emmanuele
    Gelfusa, Michela
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    Asunta, O.
    Auriemma, F.
    Austin, Y.
    Avotina, L.
    Axton, M. D.
    Ayres, C.
    Bacharis, M.
    Baciero, A.
    Baiao, D.
    ENTROPY, 2017, 19 (10)