Metrological intercomparison of six terrestrial laser scanning systems

被引:7
|
作者
Gonzalez-Jorge, Higinio [1 ]
Rodriguez-Gonzalvez, Pablo [2 ,3 ]
Shen, Yueqian [4 ]
Laguela, Susana [2 ]
Diaz-Vilarino, Lucia [1 ]
Lindenbergh, Roderik [4 ]
Gonzalez-Aguilera, Diego [2 ]
Arias, Pedro [1 ]
机构
[1] Univ Vigo, Sch Min & Energy Engn, Galician Aerosp Innovat Ctr CINAE, Geotech Grp, Vigo 36310, Spain
[2] Univ Salamanca, Dept Cartog & Land Engn, Polytech Sch Avila, Hornos Caleros 50, Avila 05003, Spain
[3] Univ Leon, Dept Min Technol Topog & Struct, Avda Astorga S-N, Ponferrada 24401, Spain
[4] Delft Univ Technol, Dept Geosci & Remote Sensing, Stevinweg 1, NL-2628 CN Delft, Netherlands
关键词
optical scanners; remote sensing by laser beam; three-dimensional printing; terrestrial laser scanning systems; phase shift; time of flight scanners; three-dimensional printing spheres; metrological intercomparison; MICROSOFT KINECT; VERIFICATION; REGISTRATION; DEFORMATION; RESOLUTION; SENSORS;
D O I
10.1049/iet-smt.2017.0209
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Intercomparison among six terrestrial laser scanner systems focused on the measurement of small elements (<0.5m) is performed. Phase shift (PS) and time of flight (ToF) scanners are considered. Two standard artefacts containing three-dimensional printing spheres and steps of variable height are used for the experiment. Results show errors between -4.5 and 3.5mm in the measurement of distances between step planes. The most stable systems for measuring small elements seem the Leica C10, Faro Photon and Riegl LMS Z390i. The quality of the results is linked to the overall quality of the system rather than the specific technology used for range measurement (PS or ToF) which does not appear to be a determining factor.
引用
收藏
页码:218 / 222
页数:5
相关论文
共 50 条
  • [1] Metrological aspects in terrestrial laser-scanning technology
    Martin, Zogg Hans
    Ingensand, Hilmar
    7TH INTERNATIONAL CONFERENCE ENVIRONMENTAL ENGINEERING, VOLS 1-3, 2008, : 1514 - 1518
  • [2] Metrological comparison of terrestrial laser scanning systems Riegl LMS Z390i and Trimble GX
    Gonzalez-Jorge, Higinio
    Rodriguez-Gonzalvez, Pablo
    Gonzalez-Aguilera, Diego
    Varela-Gonzalez, Maria
    OPTICAL ENGINEERING, 2011, 50 (11)
  • [3] Standard artifact for the geometric verification of terrestrial laser scanning systems
    Gonzalez-Jorge, H.
    Riveiro, B.
    Armesto, J.
    Arias, P.
    OPTICS AND LASER TECHNOLOGY, 2011, 43 (07): : 1249 - 1256
  • [4] Methods for Geometric Accuracy Investigations of Terrestrial Laser Scanning Systems
    Kersten, Thomas P.
    Mechelke, Klaus
    Lindstaedt, Maren
    Sternberg, Harald
    PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2009, (04): : 301 - 315
  • [5] A simplified procedure of metrological testing of the terrestrial laser scanners
    Pejic, Marko
    Ogrizovic, Vukan
    Bozic, Branko
    Milovanovic, Branko
    Marosan, Stevan
    MEASUREMENT, 2014, 53 : 260 - 269
  • [6] Topic: Terrestrial Laser Scanning
    Kersten, Thomas P.
    Przybilla, Heinz-Juergen
    PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2009, (01): : 5 - 7
  • [7] DEVELOPMENT OF TERRESTRIAL LASER SCANNING SIMULATOR
    Luhmann, Thomas
    Chizhova, Maria
    Gorkovchuk, Denys
    Popovas, Darius
    Gorkovchuk, Julia
    Hess, Mona
    9TH INTERNATIONAL WORKSHOP 3D-ARCH 3D VIRTUAL RECONSTRUCTION AND VISUALIZATION OF COMPLEX ARCHITECTURES, VOL. 46-2, 2022, : 329 - 334
  • [8] Target identification in terrestrial laser scanning
    Ge, X.
    Wunderlich, T.
    SURVEY REVIEW, 2015, 47 (341) : 129 - 140
  • [9] Terrestrial Laser Scanning in Forest Inventories
    Liang, Xinlian
    Kaartinen, Harri
    Hyyppa, Juha
    Pfeifer, Norbert
    GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2016, 30 (02): : 26 - 29
  • [10] Terrestrial Laser Scanning for Vegetation Sampling
    Richardson, Jeffrey J.
    Moskal, L. Monika
    Bakker, Jonathan D.
    SENSORS, 2014, 14 (11) : 20304 - 20319