CONSTRUCTION OF TWO-BUBBLE SOLUTIONS FOR THE ENERGY-CRITICAL NLS

被引:18
|
作者
Jendrej, Jacek [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
来源
ANALYSIS & PDE | 2017年 / 10卷 / 08期
关键词
nonlinear Schrodinger equation; energy-critical; multisoliton; NONLINEAR SCHRODINGER-EQUATION; GLOBAL WELL-POSEDNESS; BLOW-UP; GROUND-STATE; DYNAMICS; SCATTERING; COMPACTNESS;
D O I
10.2140/apde.2017.10.1923
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct pure two-bubbles for the energy-critical focusing nonlinear Schrodinger equation in space dimension N >= 7. The constructed solution is global in (at least) one time direction and approaches a superposition of two stationary states both centered at the origin, with the ratio of their length scales converging to 0. One of the bubbles develops at scale 1, whereas the length scale of the other converges to 0 at rate vertical bar t vertical bar-2/N-6. The phases of the two bubbles form the right angle.
引用
收藏
页码:1923 / 1959
页数:37
相关论文
共 50 条
  • [1] CONSTRUCTION OF TWO-BUBBLE SOLUTIONS FOR ENERGY-CRITICAL WAVE EQUATIONS
    Jendrej, Jacek
    AMERICAN JOURNAL OF MATHEMATICS, 2019, 141 (01) : 55 - 118
  • [2] DYNAMIC OF THRESHOLD SOLUTIONS FOR ENERGY-CRITICAL NLS
    Duyckaerts, Thomas
    Merle, Frank
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 18 (06) : 1787 - 1840
  • [3] Dynamic of Threshold Solutions for Energy-Critical NlS
    Thomas Duyckaerts
    Frank Merle
    Geometric and Functional Analysis, 2009, 18 : 1787 - 1840
  • [4] Dynamics of subcritical threshold solutions for energy-critical NLS
    Su, Qingtang
    Zhao, Zehua
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2023, 20 (01) : 37 - 72
  • [5] Energy-Critical NLS with Quadratic Potentials
    Killip, Rowan
    Visan, Monica
    Zhang, Xiaoyi
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (12) : 1531 - 1565
  • [6] Construction of multi-bubble solutions for the energy-critical wave equation in dimension 5
    Jendrej, Jacek
    Martel, Yvan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 139 : 317 - 355
  • [7] ENERGY-CRITICAL NLS WITH POTENTIALS OF QUADRATIC GROWTH
    Jao, Case
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (02) : 563 - 587
  • [8] THE ENERGY-CRITICAL NLS WITH INVERSE-SQUARE POTENTIAL
    Killip, Rowan
    Miao, Changxing
    Visan, Monica
    Zhang, Junyong
    Zheng, Jiqiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (07) : 3831 - 3866
  • [9] Remark on energy-critical NLS in 5D
    Cheng, Xing
    Gao, Yanfang
    Zheng, Jiqiang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (08) : 2100 - 2117
  • [10] THE ENERGY-CRITICAL DEFOCUSING NLS ON T3
    Ionescu, Alexandru D.
    Pausader, Benoit
    DUKE MATHEMATICAL JOURNAL, 2012, 161 (08) : 1581 - 1612