Universal scaling of Lyapunov-exponent fluctuations in space-time chaos

被引:20
|
作者
Pazo, Diego [1 ]
Lopez, Juan M. [1 ]
Politi, Antonio [2 ]
机构
[1] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, Santader 39005, Spain
[2] Univ Aberdeen, Kings Coll, Inst Complex Syst & Math Biol, Aberdeen AB24 3UE, Scotland
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 06期
关键词
Lyapunov functions;
D O I
10.1103/PhysRevE.87.062909
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Finite-time Lyapunov exponents of generic chaotic dynamical systems fluctuate in time. These fluctuations are due to the different degree of stability across the accessible phase space. A recent numerical study of spatially extended systems has revealed that the diffusion coefficient D of the Lyapunov exponents (LEs) exhibits a nontrivial scaling behavior, D(L) similar to L-gamma, with the system size L. Here, we show that the wandering exponent gamma can be expressed in terms of the roughening exponents associated with the corresponding "Lyapunov surface." Our theoretical predictions are supported by the numerical analysis of several spatially extended systems. In particular, we find that the wandering exponent of the first LE is universal: in view of the known relationship with the Kardar-Parisi-Zhang equation, gamma can be expressed in terms of known critical exponents. Furthermore, our simulations reveal that the bulk of the spectrum exhibits a clearly different behavior and suggest that it belongs to a possibly unique universality class, which has, however, yet to be identified.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] ESTIMATION OF A LYAPUNOV-EXPONENT SPECTRUM OF PLASMA CHAOS
    HUANG, W
    DING, WX
    FENG, DL
    YU, CX
    PHYSICAL REVIEW E, 1994, 50 (02): : 1062 - 1069
  • [2] LYAPUNOV-EXPONENT SPECTRUM FROM NOISY TIME SERIES
    Yao, Tian-Liang
    Liu, Hai-Feng
    Xu, Jian-Liang
    Li, Wei-Feng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (06):
  • [3] Structural stability of simple classical fluids: Universal properties of the Lyapunov-exponent measure
    Malescio, G
    Giaquinta, PV
    Rosenfeld, Y
    PHYSICAL REVIEW E, 2000, 61 (04) : 4090 - 4094
  • [4] Structural stability of simple classical fluids: Universal properties of the Lyapunov-exponent measure
    Malescio, G.
    Giaquinta, P.V.
    Rosenfeld, Y.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (04): : 4090 - 4094
  • [5] ESTIMATING THE LYAPUNOV-EXPONENT SPECTRUM FROM SHORT-TIME SERIES OF LOW PRECISION
    ZENG, X
    EYKHOLT, R
    PIELKE, RA
    PHYSICAL REVIEW LETTERS, 1991, 66 (25) : 3229 - 3232
  • [6] Space-time fluctuations
    Ng, YJ
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2005, 120 (6-8): : 867 - 875
  • [7] Universal scaling law for the largest Lyapunov exponent in coupled map lattices
    Yang, WM
    Ding, EJ
    Ding, MZ
    PHYSICAL REVIEW LETTERS, 1996, 76 (11) : 1808 - 1811
  • [8] Scaling analysis of space-time infiltration based on the universal multifractal model
    Meng, H.
    Salas, J. D.
    Green, T. R.
    Ahuja, L. R.
    JOURNAL OF HYDROLOGY, 2006, 322 (1-4) : 220 - 235
  • [9] Applying the Lyapunov exponent to research chaos of economic time series
    Liu, YX
    Wen, BC
    Yang, JD
    ASIA-PACIFIC VIBRATION CONFERENCE 2001, VOL 1, PROCEEDINGS, 2001, : 121 - 123
  • [10] Numerical Analysis and Improved Algorithms for Lyapunov-Exponent Calculation of Discrete-Time Chaotic Systems
    He, Jianbin
    Yu, Simin
    Cai, Jianping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (13):