共 50 条
Comprehensive analysis of lncRNA-associated competing endogenous RNA network in tongue squamous cell carcinoma
被引:28
|作者:
Zhang, Shusen
[1
,2
,3
]
Cao, Ruoyan
[1
,2
]
Li, Qiulan
[4
]
Yao, Mianfeng
[5
]
Chen, Yu
[1
,2
]
Zhou, Hongbo
[1
,2
]
机构:
[1] Cent South Univ, Dept Prosthodont, Xiangya Stomatol Hosp, Changsha, Hunan, Peoples R China
[2] Cent South Univ, Sch Stomatol, Changsha, Hunan, Peoples R China
[3] Hunan Univ Med, Dept Stomatol, Changsha, Hunan, Peoples R China
[4] Cent South Univ, Xiangya Hosp 2, Dept Stomatol, Changsha, Hunan, Peoples R China
[5] Cent South Univ, Xiangya Hosp, Dept Stomatol, Changsha, Hunan, Peoples R China
来源:
关键词:
Tongue squamous cell carcinoma;
Long noncoding RNA;
Prognosis;
Competing endogenous RNA network;
LONG NONCODING RNA;
PANCREATIC-CANCER;
SIGNALING PATHWAY;
POOR-PROGNOSIS;
LUNG-CANCER;
PROMOTES;
EXPRESSION;
PROLIFERATION;
METASTASIS;
APOPTOSIS;
D O I:
10.7717/peerj.6397
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Background. Increasing evidence has demonstrated that long non-coding RNAs (lncRNAs) play an important role in the competitive endogenous RNA (ceRNA) networks in that they regulate protein-coding gene expression by sponging microRNAs (miRNAs). However, the understanding of the ceRNA network in tongue squamous cell carcinoma (TSCC) remains limited. Methods. Expression profile data regarding mRNAs, miRNAs and lncRNAs as well as clinical information on 122 TSCC tissues and 15 normal controls from The Cancer Genome Atlas (TCGA) database were collected. We used the edgR package to identify differentially expressed mRNAs (DEmRNAs), lncRNAs (DElncRNAs) and miRNAs (DEmiRNAs) between TSCC samples and normal samples. In order to explore the functions of DEmRNAs, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed. Subsequently, a ceRNA network was established based on the identified DElncRNAs-DEmiRNAs and DEmiRNAs-DEmRNAs interactions. The RNAs within the ceRNA network were analyzed for their correlation with overall disease survival. Finally, lncRNAs were specifically analyzed for their correlation with clinical features in the included TSCC patient samples. Results. A total of 1867 mRNAs, 828 lncRNAs and 81 miRNAs were identified as differentially expressed in TSCC tissues (vertical bar log(2) fold change vertical bar >= 2; adjusted P value <0.01). The resulting ceRNA network included 16 mRNAs, 56 lncRNAs and 6 miRNAs. Ten out of the 56 lncRNAs were found to be associated with the overall survival in TSCC patients (P < 0.05); 10 lncRNAs were correlated with TSCC progression (P < 0.05). Conclusion. Our study deepens the understanding of ceRNA network regulatory mechanisms in TSCC. Furthermore, we identified ten lncRNAs (PART1, LINC00261, AL163952.1, C2orf48, FAM87A, LINC00052, LINC00472, STEAP3-AS1, TSPEAR-AS1 and ERVH48-1) as novel, potential prognostic biomarkers and therapeutic targets for TSCC.
引用
收藏
页数:20
相关论文