Cyclic Demazure modules and positroid varieties

被引:0
|
作者
Lam, Thomas [1 ]
机构
[1] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2019年 / 26卷 / 02期
关键词
CANONICAL BASES; IRREDUCIBLE REPRESENTATIONS; SCHUBERT VARIETIES; DIMERS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A positroid variety is an intersection of cyclically rotated Grassmannian Schubert varieties. Each graded piece of the homogeneous coordinate ring of a positroid variety is the intersection of cyclically rotated (rectangular) Demazure modules, which we call the cyclic Demazure module. In this note, we show that the cyclic Demazure module has a canonical basis, and define the cyclic Demazure crystal.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Quiver varieties and Demazure modules
    Alistair Savage
    Mathematische Annalen, 2006, 335 : 31 - 46
  • [2] Quiver varieties and Demazure modules
    Savage, A
    MATHEMATISCHE ANNALEN, 2006, 335 (01) : 31 - 46
  • [3] ON THE SUPPORT VARIETIES FOR DEMAZURE MODULES
    Jones, Benjamin F.
    Nakano, Daniel K.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 91 (03) : 343 - 363
  • [4] Erratum to: Quiver varieties and Demazure modules
    Alistair Savage
    Mathematische Annalen, 2010, 347 : 993 - 995
  • [5] The twist for positroid varieties
    Muller, Greg
    Speyer, David E.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2017, 115 : 1014 - 1071
  • [6] Beilinson-Drinfeld Schubert varieties and global Demazure modules
    Dumanski, Ilya
    Feigin, Evgeny
    Finkelberg, Michael
    FORUM OF MATHEMATICS SIGMA, 2021, 9
  • [7] Positroid varieties: juggling and geometry
    Knutson, Allen
    Lam, Thomas
    Speyer, David E.
    COMPOSITIO MATHEMATICA, 2013, 149 (10) : 1710 - 1752
  • [9] Quiver varieties and Demazure modules (vol 335, pg 31, 2006)
    Savage, Alistair
    MATHEMATISCHE ANNALEN, 2010, 347 (04) : 993 - 995
  • [10] Positroid varieties and cluster algebras
    Galashin, Pavel
    Lam, Thomas
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2023, 56 (03): : 859 - 884