The effect of coronary calcification on diagnostic performance of machine learning-based CT-FFR: a Chinese multicenter study

被引:31
|
作者
Di Jiang, Meng [1 ]
Zhang, Xiao Lei [1 ]
Liu, Hui [2 ]
Tang, Chun Xiang [1 ]
Li, Jian Hua [3 ]
Wang, Yi Ning [4 ]
Xu, Peng Peng [1 ]
Zhou, Chang Sheng [1 ]
Zhou, Fan [1 ]
Lu, Meng Jie [1 ]
Zhang, Jia Yin [5 ,6 ]
Yu, Meng Meng [5 ,6 ]
Hou, Yang [7 ]
Zheng, Min Wen [8 ]
Zhang, Bo [9 ]
Zhang, Dai Min [10 ]
Yi, Yan [5 ,6 ]
Xu, Lei [11 ]
Hu, Xiu Hua [12 ]
Yang, Jian [13 ]
Lu, Guang Ming [1 ]
Ni, Qian Qian [1 ]
Zhang, Long Jiang [1 ]
机构
[1] Nanjing Univ, Dept Med Imaging, Jinling Hosp, Med Sch, Nanjing 210002, Jiangsu, Peoples R China
[2] Guangdong Gen Hosp, Dept Radiol, Guangzhou 510080, Peoples R China
[3] Nanjing Univ, Jinling Hosp, Med Sch, Dept Cardiol, Nanjing 210002, Jiangsu, Peoples R China
[4] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Radiol, Beijing 100730, Peoples R China
[5] Shanghai Jiao Tong Univ Affiliated Peoples Hosp 6, Inst Diagnost & Intervent Radiol, Shanghai 200233, Peoples R China
[6] Shanghai Jiao Tong Univ Affiliated Peoples Hosp 6, Dept Cardiol, Shanghai 200233, Peoples R China
[7] China Med Univ, Shengjing Hosp, Dept Radiol, Shenyang 110001, Peoples R China
[8] Fourth Mil Med Univ, Xijing Hosp, Dept Radiol, Xian, Shanxi, Peoples R China
[9] Jiangsu Taizhou Peoples Hosp, Dept Radiol, Taizhou 225300, Peoples R China
[10] Nanjing Med Univ, Nanjing Hosp 1, Dept Cardiol, Nanjing 210006, Jiangsu, Peoples R China
[11] Capital Med Univ, Beijing Anzhen Hosp, Dept Radiol, Beijing 10029, Peoples R China
[12] Zhejiang Univ, Shaoyifu Hosp, Med Coll, Dept Radiol, Hangzhou 310016, Peoples R China
[13] Xi An Jiao Tong Univ, Med Sch, Affiliated Hosp 1, Dept Radiol, Xian 710061, Peoples R China
基金
中国国家自然科学基金;
关键词
Computed tomography angiography; Coronary disease; Calcium; Ischemia; Data accuracy; FRACTIONAL FLOW RESERVE; COMPUTED-TOMOGRAPHY; ARTERY-DISEASE; ANGIOGRAPHY; ACCURACY; STENOSIS; LESIONS; SCORE;
D O I
10.1007/s00330-020-07261-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective To investigate the effect of coronary calcification morphology and severity on the diagnostic performance of machine learning (ML)-based coronary CT angiography (CCTA)-derived fractional flow reserve (CT-FFR) with FFR as a reference standard. Methods A total of 442 patients (61.2 +/- 9.1 years, 70% men) with 544 vessels who underwent CCTA, ML-based CT-FFR, and invasive FFR from China multicenter CT-FFR study were enrolled. The effect of calcification arc, calcification remodeling index (CRI), and Agatston score (AS) on the diagnostic performance of CT-FFR was investigated. CT-FFR <= 0.80 and lumen reduction >= 50% determined by CCTA were identified as vessel-specific ischemia with invasive FFR as a reference standard. Results Compared with invasive FFR, ML-based CT-FFR yielded an overall sensitivity of 0.84, specificity of 0.94, and accuracy of 0.90 in a total of 344 calcification lesions. There was no statistical difference in diagnostic accuracy, sensitivity, or specificity of CT-FFR across different calcification arc, CRI, or AS levels. CT-FFR exhibited improved discrimination of ischemia compared with CCTA alone in lesions with mild-to-moderate calcification (AUC, 0.89 vs. 0.69,p< 0.001) and lesions with CRI >= 1 (AUC, 0.89 vs. 0.71,p< 0.001). The diagnostic accuracy and specificity of CT-FFR were higher than CCTA alone in patients and vessels with mid (100 to 299) or high (>= 300) AS. Conclusion Coronary calcification morphology and severity did not influence diagnostic performance of CT-FFR in ischemia detection, and CT-FFR showed marked improved discrimination of ischemia compared with CCTA alone in the setting of calcification.
引用
收藏
页码:1482 / 1493
页数:12
相关论文
共 50 条
  • [1] The effect of coronary calcification on diagnostic performance of machine learning–based CT-FFR: a Chinese multicenter study
    Meng Di Jiang
    Xiao Lei Zhang
    Hui Liu
    Chun Xiang Tang
    Jian Hua Li
    Yi Ning Wang
    Peng Peng Xu
    Chang Sheng Zhou
    Fan Zhou
    Meng Jie Lu
    Jia Yin Zhang
    Meng Meng Yu
    Yang Hou
    Min Wen Zheng
    Bo Zhang
    Dai Min Zhang
    Yan Yi
    Lei Xu
    Xiu Hua Hu
    Jian Yang
    Guang Ming Lu
    Qian Qian Ni
    Long Jiang Zhang
    European Radiology, 2021, 31 : 1482 - 1493
  • [2] Effect of Coronary Calcification Severity on Measurements and Diagnostic Performance of CT-FFR With Computational Fluid Dynamics: Results From CT-FFR CHINA Trial
    Zhao, Na
    Gao, Yang
    Xu, Bo
    Yang, Weixian
    Song, Lei
    Jiang, Tao
    Xu, Li
    Hu, Hongjie
    Li, Lin
    Chen, Wenqiang
    Li, Dumin
    Zhang, Feng
    Fan, Lijuan
    Lu, Bin
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 8
  • [3] Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR Results From MACHINE Registry
    Tesche, Christian
    Otani, Katharina
    De Cecco, Carlo N.
    Coenen, Adriaan
    De Geer, Jakob
    Kruk, Mariusz
    Kim, Young-Hak
    Albrecht, Moritz H.
    Baumann, Stefan
    Renker, Matthias
    Bayer, Richard R.
    Duguay, Taylor M.
    Litwin, Sheldon E.
    Varga-Szemes, Akos
    Steinberg, Daniel H.
    Yang, Dong Hyun
    Kepka, Cezary
    Persson, Anders
    Nieman, Koen
    Schoepf, U. Joseph
    JACC-CARDIOVASCULAR IMAGING, 2020, 13 (03) : 760 - 770
  • [4] Validation and diagnostic performance of a fast on-site deep learning-based CT-FFR algorithm
    Giannopoulos, A.
    Keller, L. K.
    Sepulcri, D. S.
    Boehm, R. B.
    Garefa, C. G.
    Tsinaridis, A. T.
    Sager, D. S.
    Venugopal, P. V.
    Mitra, J. M.
    Ghose, S. G.
    Pack, J. D. P.
    Davis, C. L. D.
    Edic, P. M. E.
    Kaufmann, P. A. K.
    Buechel, R. R. B.
    EUROPEAN HEART JOURNAL, 2022, 43 : 203 - 203
  • [5] How Gold Is the Gold Standard for Machine Learning-Based CT-FFR? COMMENT
    Yong, Celina M.
    Fearon, William F.
    JACC-CARDIOVASCULAR IMAGING, 2022, 15 (03) : 487 - 488
  • [6] Diagnostic Performance of Machine Learning Based CT-FFR in Detecting Ischemia in Myocardial Bridging and Concomitant Proximal Atherosclerotic Disease
    Zhou, Fan
    Wang, Yi Ning
    Schoepf, U. Joseph
    Tesche, Christian
    Tang, Chun Xiang
    Zhou, Chang Sheng
    Xu, Lei
    Hou, Yang
    Zheng, Min Wen
    Yan, Jing
    Lu, Meng Jie
    Lu, Guang Ming
    Zhang, Dai Min
    Zhang, Bo
    Zhang, Jia Yin
    Zhang, Long Jiang
    CANADIAN JOURNAL OF CARDIOLOGY, 2019, 35 (11) : 1523 - 1533
  • [7] Diagnostic accuracy of coronary computed tomography angiography-derived fractional flow reserve (CT-FFR) in patients before liver transplantation using CT-FFR machine learning algorithm
    Schuessler, Maximilian
    Saner, Fuat
    Al-Rashid, Fadi
    Schlosser, Thomas
    EUROPEAN RADIOLOGY, 2022, 32 (12) : 8761 - 8768
  • [8] Diagnostic accuracy of coronary computed tomography angiography-derived fractional flow reserve (CT-FFR) in patients before liver transplantation using CT-FFR machine learning algorithm
    Maximilian Schuessler
    Fuat Saner
    Fadi Al-Rashid
    Thomas Schlosser
    European Radiology, 2022, 32 : 8761 - 8768
  • [9] Diagnostic Performance of a Machine Learning-Based CT-Derived FFR in Detecting Flow-Limiting Stenosis
    Morais, Thamara Carvalho
    Assuncao-Jr, Antonildes Nascimento
    Dantas Junior, Roberto Nery
    Grego da Silva, Carla Franco
    de Paula, Caroline Bastida
    Torres, Roberto Almeida
    Magalhaes, Tiago Augusto
    Nomura, Cesar Higa
    Rodrigues de Avila, Luiz Francisco
    Parga Filho, Jose Rodrigues
    ARQUIVOS BRASILEIROS DE CARDIOLOGIA, 2021, 116 (06) : 1091 - 1098
  • [10] Diagnostic performance of the quantitative flow ratio and CT-FFR for coronary lesion-specific ischemia
    Han, Wenqi
    Liang, Lei
    Han, Tuo
    Wang, Zhenyu
    Shi, Lei
    Li, Yuan
    Chang, Fengjun
    Cao, Yiwei
    Zhang, Chunyan
    Wu, Haoyu
    SCIENTIFIC REPORTS, 2024, 14 (01):