Let X be a normal variety endowed with an algebraic torus action. An additive group action alpha on X is called vertical if a general orbit of alpha is contained in the closure of an orbit of the torus action and the image of the torus normalizes the image of alpha in Aut(X). Our first result in this paper is a classification of vertical additive group actions on X under the assumption that X is proper over an affine variety. Then we establish a criterion as to when the infinitesimal generators of a finite collection of additive group actions on X generate a finite-dimensional Lie algebra inside the Lie algebra of derivations of X. (C) 2020 Elsevier B.V. All rights reserved.