Human Behavior Cognition Using Smartphone Sensors

被引:107
|
作者
Pei, Ling [1 ]
Guinness, Robert [1 ]
Chen, Ruizhi [1 ,2 ]
Liu, Jingbin [1 ]
Kuusniemi, Heidi [1 ]
Chen, Yuwei [1 ]
Chen, Liang [1 ]
Kaistinen, Jyrki [3 ]
机构
[1] Finnish Geodet Inst, Dept Nav & Positioning, FIN-02431 Masala, Finland
[2] Texas A&M Univ, Conrad Blucher Inst Surveying & Sci, Corpus Christi, TX 78412 USA
[3] Univ Helsinki, Inst Behav Sci, Psychol Evolving Media & Technol Res Grp, FIN-00014 Helsinki, Finland
来源
SENSORS | 2013年 / 13卷 / 02期
基金
芬兰科学院;
关键词
sensing; location; motion recognition; LS-SVM; cognitive phone; human behavior modeling; MOTION RECOGNITION; NAVIGATION; ACCELEROMETRY; TRACKING;
D O I
10.3390/s130201402
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This research focuses on sensing context, modeling human behavior and developing a new architecture for a cognitive phone platform. We combine the latest positioning technologies and phone sensors to capture human movements in natural environments and use the movements to study human behavior. Contexts in this research are abstracted as a Context Pyramid which includes six levels: Raw Sensor Data, Physical Parameter, Features/Patterns, Simple Contextual Descriptors, Activity-Level Descriptors, and Rich Context. To achieve implementation of the Context Pyramid on a cognitive phone, three key technologies are utilized: ubiquitous positioning, motion recognition, and human behavior modeling. Preliminary tests indicate that we have successfully achieved the Activity-Level Descriptors level with our LoMoCo (Location-Motion-Context) model. Location accuracy of the proposed solution is up to 1.9 meters in corridor environments and 3.5 meters in open spaces. Test results also indicate that the motion states are recognized with an accuracy rate up to 92.9% using a Least Square-Support Vector Machine (LS-SVM) classifier.
引用
收藏
页码:1402 / 1424
页数:23
相关论文
共 50 条
  • [1] Human Action Recognition Using Smartphone Sensors
    Saha, Ashim
    Sharma, Tulika
    Batra, Harshika
    Jain, Anupreksha
    Pal, Vabna
    2020 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2020), 2020, : 238 - 243
  • [2] Human Activity Recognition Using Smartphone Sensors
    Bugdol, Marcin D.
    Mitas, Andrzej W.
    Grzegorzek, Marcin
    Meyer, Robert
    Wilhelm, Christoph
    INFORMATION TECHNOLOGIES IN MEDICINE (ITIB 2016), VOL 2, 2016, 472 : 41 - 47
  • [3] Dangerous Driving Behavior Detection Using Smartphone Sensors
    Li, Fu
    Zhang, Hai
    Che, Huan
    Qiu, Xiaochen
    2016 IEEE 19TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2016, : 1902 - 1907
  • [4] Bicycle Behavior Recognition using Sensors Equipped with Smartphone
    Usami, Yuri
    Ishikawa, Kazuaki
    Takayama, Toshinori
    Yanagisawa, Masao
    Togawa, Nozomu
    2018 IEEE 8TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - BERLIN (ICCE-BERLIN), 2018,
  • [5] Human Physical Activity Recognition Using Smartphone Sensors
    Voicu, Robert-Andrei
    Dobre, Ciprian
    Bajenaru, Lidia
    Ciobanu, Radu-Ioan
    SENSORS, 2019, 19 (03)
  • [6] MDBR: Mobile Driving Behavior Recognition Using Smartphone Sensors
    Dang-Nhac Lu
    Thi-Thu-Trang Ngo
    Hong-Quang Le
    Thi-Thu-Hien Tran
    Manh-Hai Nguyen
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2017, PT II, 2017, 10449 : 22 - 31
  • [7] Detection of aberration in human behavior using shallow neural network over smartphone inertial sensors data
    Sakshi, M. P. S.
    Bhatia, M. P. S.
    Chakraborty, Pinaki
    COMPUTATIONAL INTELLIGENCE, 2024, 40 (05)
  • [8] Unsupervised learning for human activity recognition using smartphone sensors
    Kwon, Yongjin
    Kang, Kyuchang
    Bae, Changseok
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (14) : 6067 - 6074
  • [9] Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview
    Lima, Wesllen Sousa
    Souto, Eduardo
    El-Khatib, Khalil
    Jalali, Roozbeh
    Gama, Joao
    SENSORS, 2019, 19 (14)
  • [10] A Comparative Study on Human Activity Recognition Using Inertial Sensors in a Smartphone
    Wang, Aiguo
    Chen, Guilin
    Yang, Jing
    Zhao, Shenghui
    Chang, Chih-Yung
    IEEE SENSORS JOURNAL, 2016, 16 (11) : 4566 - 4578