A Hardware-Accelerated Segmentation Algorithm for Moving Object Generation

被引:0
|
作者
Chen Tianding [1 ]
机构
[1] Zhejiang Gongshang Univ, Inst Commun & Informat Technol, Hangzhou 310018, Peoples R China
关键词
Image hardware acceleration; Moving object; Fast algorithm;
D O I
10.1109/CHICC.2008.4605467
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It presents an efficient moving object segmentation algorithm suitable for images on the programmable graphics hardware. The basic idea is to use simultaneously a novel spatial segmentation algorithm and an effective temporal algorithm based on human visual system. It defines two features needed in segmentation, the spatial and the temporal. Two segmentation algorithms are used simultaneously to produce the edges and the region of a moving object, respectively. Then, it takes use of the edges with the region of the moving object to obtain the object. It reduced number of the time-consuming motion estimation computation dramatically. So, the whole processing speed is significantly accelerated to meet the hardware implementation requirement. Finally, a post-processing step is applied on the object to smooth the object boundary. Good performance of this algorithm is demonstrated by the experimental results.
引用
收藏
页码:331 / 335
页数:5
相关论文
共 50 条
  • [1] Hardware-accelerated method for real-time shadow generation
    Yang, Bing
    Zhan, Shou-Yi
    Li, Feng-Xia
    Zheng, Fu-Ren
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2005, 25 (07): : 594 - 598
  • [2] Hardware-accelerated template matching
    Cabido, R
    Montemayor, AS
    Sánchez, A
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 1, PROCEEDINGS, 2005, 3522 : 691 - 698
  • [3] Hardware-accelerated Text Analytics
    Polig, R.
    Atasu, K.
    Hagleitner, C.
    Chiticariu, L.
    Reiss, F.
    Zhu, H.
    Hofstee, P.
    2014 IEEE HOT CHIPS 26 SYMPOSIUM (HCS), 2014,
  • [4] Hardware-accelerated simulated radiography
    Laney, D
    Callahan, SP
    Max, N
    Silva, CT
    Langer, S
    Frank, R
    IEEE VISUALIZATION 2005, PROCEEDINGS, 2005, : 343 - 350
  • [5] EvoJAX: Hardware-Accelerated Neuroevolution
    Tang, Yujin
    Tian, Yingtao
    Ha, David
    GECCO 2022 Companion - Proceedings of the 2022 Genetic and Evolutionary Computation Conference, 2022, : 308 - 311
  • [6] EvoJAX: Hardware-Accelerated Neuroevolution
    Tang, Yujin
    Tian, Yingtao
    Ha, David
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 308 - 311
  • [7] Test Generation Methods for Utilization Improvement of Hardware-Accelerated Simulation Platforms
    Kadry, Wisam
    Krestyashyn, Dimtry
    Morgenshtein, Arkadiy
    Nahir, Amir
    Sokhin, Vitali
    Park, Jin Sung
    Park, Sung-Boem
    Jeong, Wookyeong
    Son, Jae Cheol
    IEEE DESIGN & TEST, 2017, 34 (01) : 65 - 76
  • [8] Hardware-accelerated spike train generation for neuromorphic image and video processing
    Iakymchuk, T.
    Rosado-Munoz, A.
    Bataller-Mompean, M.
    Guerrero-Martinez, J. F.
    Frances-Villora, J. V.
    Wegrzyn, M.
    Adamski, M.
    2014 IX SOUTHERN CONFERENCE ON PROGRAMMABLE LOGIC (SPL 2014), 2014,
  • [9] Object Tracking and Motion Capturing in Hardware-Accelerated Multi-camera System
    Leephokhanon, Sirisak
    Wiangtong, Theerayod
    RECONFIGURABLE COMPUTING: ARCHITECTURES, TOOLS AND APPLICATIONS, 2009, 5453 : 324 - 329
  • [10] A hybrid hardware-accelerated algorithm for high quality rendering of visual hulls
    Li, M
    Magnor, M
    Seidel, HP
    GRAPHICS INTERFACE 2004, PROCEEDINGS, 2004, : 41 - 48