Preparation and electrochemical properties of re-synthesized LiCoO2 from spent lithium-ion batteries

被引:36
|
作者
Li Li [1 ,2 ]
Chen RenJie [1 ,2 ]
Zhang XiaoXiao [1 ]
Wu Feng [1 ,2 ]
Ge Jing [1 ]
Xie Man [1 ]
机构
[1] Beijing Inst Technol, Beijing Key Lab Environm Sci & Engn, Sch Chem Engn & Environm, Beijing 100081, Peoples R China
[2] Natl Dev Ctr High Technol Green Mat, Beijing 100081, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2012年 / 57卷 / 32期
关键词
spent lithium-ion batteries; lithium cobalt oxide; sol-gel; recycling; COBALT OXIDE-FILMS; RECOVERY; SEPARATION;
D O I
10.1007/s11434-012-5200-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A new idea for reuse of the cathode materials of lithium-ion batteries (LIBs) is investigated to develop an environmentally friendly process for recycling spent batteries. LiCoO2 is re-synthesized from spent LIBs by leaching and a sol-gel method calcined at high temperature. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are employed to study the reactions occurring calcination that are responsible for the weight losses. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to determine the structures of the LiCoO2 powders. It was found that a pure phase of LiCoO2 can be obtained by the re-synthesis process. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are used to evaluate the electrochemical properties of the LiCoO2 powders. The discharge capacity of re-synthesized LiCoO2 is 137 mAh g(-1) at the 0.1 C rate, and the capacity retention of the re-synthesized LiCoO2 is 97.98% after 20 cycles at the 0.1 C rate, and 88.14% after 40 cycles. The results indicate that the re-synthesized LiCoO2 displays good charge/discharge performance and cycling behavior.
引用
收藏
页码:4188 / 4194
页数:7
相关论文
共 50 条
  • [1] Preparation and electrochemical properties of re-synthesized LiCoO2 from spent lithium-ion batteries
    LI Li1
    2 National Development Center for High Technology Green Materials
    Science Bulletin, 2012, (32) : 4188 - 4194
  • [2] Preparation of LiCoO2 from spent lithium-ion batteries
    Lee, CK
    Rhee, KI
    JOURNAL OF POWER SOURCES, 2002, 109 (01) : 17 - 21
  • [3] Preparation of LiCoO2 from spent lithium-ion batteries
    谷芳
    李俊生
    哈尔滨商业大学学报(自然科学版), 2010, (03) : 281 - 284
  • [4] Leaching LiCoO2 from spent lithium-ion batteries by electrochemical reduction
    Chang, Wei
    Man, Rui-Lin
    Yin, Xiao-Ying
    Zhang, Jian
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2014, 24 (03): : 787 - 792
  • [5] Preparation of LiCoO2 cathode materials from spent lithium-ion batteries
    Li, Jiangang
    Zhao, Rusong
    He, Xiangming
    Liu, Huachen
    IONICS, 2009, 15 (01) : 111 - 113
  • [6] Electrochemical behavior of bioleaching LiCoO2 from spent lithium-ion batteries by Thiobacillus ferrooxidans
    Zeng, G.-S. (zengguisheng@hotmail.com), 1600, Central South University of Technology (43):
  • [7] Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process
    Li, Li
    Chen, Renjie
    Sun, Feng
    Wu, Feng
    Liu, Jianrui
    HYDROMETALLURGY, 2011, 108 (3-4) : 220 - 225
  • [8] Preparation of LiCoO2 from Cathode Materials of Spent Lithium Ion Batteries
    Fang, Gu
    Qian, Nie
    ENVIRONMENTAL BIOTECHNOLOGY AND MATERIALS ENGINEERING, PTS 1-3, 2011, 183-185 : 1553 - 1557
  • [9] Preparation of LiCoO2 cathode materials from spent lithium–ion batteries
    Jiangang Li
    Rusong Zhao
    Xiangming He
    Huachen Liu
    Ionics, 2009, 15 : 111 - 113
  • [10] A Review of Recovering Lithium and Cobalt from Spent LiCoO2 Lithium-Ion Batteries Cathode
    Zhang, Zhiguo
    Fang, Ziming
    Li, Ying
    Huang, Yina
    Shen, Yanting
    Xiong, Bitao
    Zhao, Wenhua
    Li, Xing'ao
    Lang, Xiaoli
    Yang, Huanping
    CHEMISTRYSELECT, 2023, 8 (34):