Dialogue Act Classification In Human-to-Human Tutorial Dialogues

被引:6
|
作者
Rus, Vasile [1 ]
Maharjan, Nabin [1 ]
Banjade, Rajendra [1 ]
机构
[1] Univ Memphis, Memphis, TN 38152 USA
关键词
macro-adaptation; intelligent tutoring systems; assessment;
D O I
10.1007/978-981-10-2419-1_25
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present in this paper preliminary results with dialogue act classification in human-to-human tutorial dialogues. Dialogue acts are ways to characterize the actions of tutors and students based on the language-as-action theory. This work serves our larger goal of identifying patterns of tutors' actions, in the form of dialogue acts, that relate to learning. The preliminary results we obtained for dialogue act classification using a machine learning approach are promising.
引用
收藏
页码:183 / 186
页数:4
相关论文
共 50 条
  • [1] Hybrid Dialogue State Tracking for Real World Human-to-Human Dialogues
    Sun, Kai
    Zhu, Su
    Chen, Lu
    Yao, Siqiu
    Wu, Xueyang
    Yu, Kai
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 2060 - 2064
  • [2] Comparing Human-Human to Human-Computer Tutorial Dialogue
    Steinhauser, Natalie B.
    Campbell, Gwendolyn E.
    Harrison, Katherine M.
    Taylor, Leanne S.
    Dzikovska, Myroslava O.
    Moore, Johanna D.
    COGNITION IN FLUX, 2010, : 1738 - 1743
  • [3] Analysis of Human-to-Human Dialogue While Watching TV for Social Robots’ Utterance
    Hoshi Y.
    Okuda M.
    Hagio Y.
    Kamimura M.
    Kaneko Y.
    Nishimoto Y.
    Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2023, 77 (01): : 149 - 156
  • [4] Toward Spoken Human-Computer Tutorial Dialogues
    D'Mello, Sidney K.
    Graesser, Art
    King, Brandon
    HUMAN-COMPUTER INTERACTION, 2010, 25 (04): : 289 - 323
  • [5] Adopting Semantic Similarity for Utterance Candidates Discovery from Human-to-Human Dialogue Corpus
    Shtykh, Roman Y.
    Makita, Mitsuharu
    FUTURE AND EMERGENT TRENDS IN LANGUAGE TECHNOLOGY, FETLT 2015, 2016, 9577 : 139 - 148
  • [6] Human-to-Human Interaction Detection
    Wang, Zhenhua
    Ying, Kaining
    Meng, Jiajun
    Ning, Jifeng
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT IV, 2024, 14450 : 120 - 132
  • [7] Human-to-human transmission of hantaviruses
    Markotic, A
    LANCET, 1997, 350 (9077): : 596 - 596
  • [8] Values for human-to-human reference
    Gorman, M
    LIBRARY TRENDS, 2001, 50 (02) : 168 - 182
  • [9] Is it a good move? Mining effective tutoring strategies from human-human tutorial dialogues
    Lin, Jionghao
    Singh, Shaveen
    Sha, Lele
    Tan, Wei
    Lang, David
    Gasevic, Dragan
    Chen, Guanliang
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 127 : 194 - 207
  • [10] Analyzing the Coherence and Cohesion in Human Tutorial Dialogues when Learning with Hypermedia
    Azevedo, Roger
    Jeon, Moongee
    ARTIFICIAL INTELLIGENCE IN EDUCATION: BUILDING TECHNOLOGY RICH LEARNING CONTEXTS THAT WORK, 2007, 158 : 341 - +