Generalization of the spanning-tree technique

被引:8
|
作者
Suuriniemi, S [1 ]
Tarhasaari, T [1 ]
Kettunen, L [1 ]
机构
[1] Tampere Univ Technol, Inst Electromagnet, FIN-33101 Tampere, Finland
关键词
algebraic topology; spanning-tree techniques;
D O I
10.1109/20.996138
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The spanning-tree technique is generalized to topologically nontrivial cases, to obtain a general method for common topological problems. Tractability and elementary numerical approaches are addressed and two numerical examples are presented.
引用
收藏
页码:525 / 528
页数:4
相关论文
共 50 条
  • [1] A lattice spanning-tree entropy function
    Glasser, ML
    Lamb, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (25): : L471 - L475
  • [2] Spanning-Tree Based Coverage for a Tethered Robot
    Peng, Xiao
    Schwarzentruber, Francois
    Simonin, Olivier
    Solnon, Christine
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (02): : 1888 - 1895
  • [3] Arboricity and spanning-tree packing in random graphs
    Gao, Pu
    Perez-Gimenez, Xavier
    Sato, Cristiane M.
    RANDOM STRUCTURES & ALGORITHMS, 2018, 52 (03) : 495 - 535
  • [4] Efficient algorithms for the inverse spanning-tree problem
    Hochbaum, DS
    OPERATIONS RESEARCH, 2003, 51 (05) : 785 - 797
  • [5] Spanning-tree models for Af homopolymerizations with intramolecular reactions
    Sarmoria, C
    Miller, DR
    COMPUTATIONAL AND THEORETICAL POLYMER SCIENCE, 2001, 11 (02): : 113 - 127
  • [6] A Family of Spanning-Tree Formulations for the Maximum Cut Problem
    Mallach, Sven
    COMBINATORIAL OPTIMIZATION, ISCO 2024, 2024, 14594 : 43 - 55
  • [7] SPANNING-TREE EXTENSIONS OF THE HADAMARD-FISCHER INEQUALITIES
    JOHNSON, CR
    BARRETT, WW
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 66 (APR) : 177 - 193
  • [8] Randomized Lower Bound for Distributed Spanning-Tree Verification
    Izumi, Taisuke
    STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, SIROCCO 2014, 2014, 8576 : 137 - 148
  • [9] Spanning-tree based coverage of continuous areas by a mobile robot
    Gabriely, Y
    Rimon, E
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2001, 31 (1-4) : 77 - 98
  • [10] Research of undirected network capacity expansion based on the spanning-tree
    Liu, Yuhua
    Xu, Kaihua
    Huang, Hao
    Teng, Wei
    SIMULATED EVOLUTION AND LEARNING, PROCEEDINGS, 2006, 4247 : 228 - 235