Bandwidth of Bipartite Permutation Graphs

被引:0
|
作者
Uehara, Ryuhei [1 ]
机构
[1] JAIST, Sch Informat Sci, Nomi, Ishikawa 9231292, Japan
来源
关键词
Bandwidth; bipartite permutation graphs; chain graphs; interval graphs; threshold graphs;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The bandwidth problem is finding a linear layout of vertices in a graph in such a way that minimizes the maximum distance between two vertices joined by an edge. The bandwidth problem is one of the classic NP-complete problems. Especially, the problem is NP-complete even for trees. The bandwidth problem can be solved in polynomial time for a few graph classes. Efficient algorithms for computing the bandwidth for three graph classes are presented. The first one is a linear time algorithm for a threshold graph, and the second one is a linear time algorithm for a chain graph. The last algorithm solves the bandwidth problem for a bipartite permutation graph in O(n(2)) time. The former two algorithms improve the previously known upper bounds to optimal, and the last one improves recent result, and they give positive answers to some open problems.
引用
收藏
页码:824 / 835
页数:12
相关论文
共 50 条
  • [1] Bandwidth of bipartite permutation graphs in polynomial time
    Heggernes, Pinar
    Kratsch, Dieter
    Meister, Daniel
    LATIN 2008: THEORETICAL INFORMATICS, 2008, 4957 : 216 - +
  • [2] Bandwidth of bipartite permutation graphs in polynomial time
    Heggernes, Pinar
    Kratsch, Dieter
    Meister, Daniel
    JOURNAL OF DISCRETE ALGORITHMS, 2009, 7 (04) : 533 - 544
  • [3] BIPARTITE PERMUTATION GRAPHS
    SPINRAD, J
    BRANDSTADT, A
    STEWART, L
    DISCRETE APPLIED MATHEMATICS, 1987, 18 (03) : 279 - 292
  • [4] Bipartite Permutation Graphs Are Reconstructible
    Kiyomi, Masashi
    Saitoh, Toshiki
    Uehara, Ryuhei
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PT II, 2010, 6509 : 362 - +
  • [5] BIPARTITE PERMUTATION GRAPHS ARE RECONSTRUCTIBLE
    Kiyomi, Masashi
    Saitoh, Toshiki
    Uehara, Ryuhei
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (03)
  • [6] On opposition graphs, coalition graphs, and bipartite permutation graphs
    Le, Van Bang
    DISCRETE APPLIED MATHEMATICS, 2014, 168 : 26 - 33
  • [7] Vertex deletion into bipartite permutation graphs
    Bożyk, Lukasz
    Derbisz, Jan
    Krawczyk, Tomasz
    Novotná, Jana
    Okrasa, Karolina
    Leibniz International Proceedings in Informatics, LIPIcs, 2020, 180
  • [8] Critical properties of bipartite permutation graphs
    Alecu, Bogdan
    Lozin, Vadim
    Malyshev, Dmitriy
    JOURNAL OF GRAPH THEORY, 2024, 105 (01) : 34 - 60
  • [9] Acyclic domination on bipartite permutation graphs
    Xu, Guangjun
    Kang, Liying
    Shan, Erfang
    INFORMATION PROCESSING LETTERS, 2006, 99 (04) : 139 - 144
  • [10] Vertex Deletion into Bipartite Permutation Graphs
    Łukasz Bożyk
    Jan Derbisz
    Tomasz Krawczyk
    Jana Novotná
    Karolina Okrasa
    Algorithmica, 2022, 84 : 2271 - 2291