Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks

被引:1404
|
作者
Zheng, Wei-Long [1 ,2 ]
Lu, Bao-Liang [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Ctr Brain Like Comp & Machine Intelligence, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Key Lab Shanghai Educ Commiss Intelligent Interac, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Affective computing; deep belief networks; EEG; emotion recognition; DIFFERENTIAL ENTROPY FEATURE; DRY ELECTRODE; MUSIC; ASYMMETRY; RESPONSES; MODELS; BRAIN; CLASSIFICATION; DYNAMICS; STIMULI;
D O I
10.1109/TAMD.2015.2431497
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To investigate critical frequency bands and channels, this paper introduces deep belief networks (DBNs) to constructing EEG-based emotion recognition models for three emotions: positive, neutral and negative. We develop an EEG dataset acquired from 15 subjects. Each subject performs the experiments twice at the interval of a few days. DBNs are trained with differential entropy features extracted from multichannel EEG data. We examine the weights of the trained DBNs and investigate the critical frequency bands and channels. Four different profiles of 4, 6, 9, and 12 channels are selected. The recognition accuracies of these four profiles are relatively stable with the best accuracy of 86.65%, which is even better than that of the original 62 channels. The critical frequency bands and channels determined by using the weights of trained DBNs are consistent with the existing observations. In addition, our experiment results show that neural signatures associated with different emotions do exist and they share commonality across sessions and individuals. We compare the performance of deep models with shallow models. The average accuracies of DBN, SVM, LR, and KNN are 86.08%, 83.99%, 82.70%, and 72.60%, respectively.
引用
收藏
页码:162 / 175
页数:14
相关论文
共 50 条
  • [1] EEG-based emotion recognition with deep convolutional neural networks
    Ozdemir, Mehmet Akif
    Degirmenci, Murside
    Izci, Elf
    Akan, Aydin
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2021, 66 (01): : 43 - 57
  • [2] Data Augmentation for EEG-Based Emotion Recognition with Deep Convolutional Neural Networks
    Wang, Fang
    Zhong, Sheng-hua
    Peng, Jianfeng
    Jiang, Jianmin
    Liu, Yan
    MULTIMEDIA MODELING, MMM 2018, PT II, 2018, 10705 : 82 - 93
  • [3] Revealing Critical Channels and Frequency Bands for Emotion Recognition from EEG with Deep Belief Network
    Zheng, Wei-Long
    Guo, Hao-Tian
    Lu, Bao-Liang
    2015 7TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2015, : 154 - 157
  • [4] EEG-based emotion recognition by analyzing multi-frequency bands
    Zhang, Jiarui
    Wang, Gang
    Wang, Siyuan
    2018 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2018, 10836
  • [5] Studying critical frequency bands and channels for EEG-based automobile sound recognition with machine learning
    Xie, Liping
    Lu, Chihua
    Liu, Zhien
    Yan, Lirong
    Xu, Tao
    APPLIED ACOUSTICS, 2022, 185
  • [6] GFIL: A Unified Framework for the Importance Analysis of Features, Frequency Bands, and Channels in EEG-Based Emotion Recognition
    Peng, Yong
    Qin, Feiwei
    Kong, Wanzeng
    Ge, Yuan
    Nie, Feiping
    Cichocki, Andrzej
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (03) : 935 - 947
  • [7] Hierarchical Convolutional Neural Networks for EEG-Based Emotion Recognition
    Jinpeng Li
    Zhaoxiang Zhang
    Huiguang He
    Cognitive Computation, 2018, 10 : 368 - 380
  • [8] Bayesian Graph Neural Networks for EEG-Based Emotion Recognition
    Chen, Jianhui
    Qian, Hui
    Gong, Xiaoliang
    CLINICAL IMAGE-BASED PROCEDURES, DISTRIBUTED AND COLLABORATIVE LEARNING, ARTIFICIAL INTELLIGENCE FOR COMBATING COVID-19 AND SECURE AND PRIVACY-PRESERVING MACHINE LEARNING, CLIP 2021, DCL 2021, LL-COVID19 2021, PPML 2021, 2021, 12969 : 24 - 33
  • [9] Hierarchical Convolutional Neural Networks for EEG-Based Emotion Recognition
    Li, Jinpeng
    Zhang, Zhaoxiang
    He, Huiguang
    COGNITIVE COMPUTATION, 2018, 10 (02) : 368 - 380
  • [10] Deep Neural Classifiers for EEG-Based Emotion Recognition in Immersive Environments
    Teo, Jason
    Chia, Jia Tian
    2018 INTERNATIONAL CONFERENCE ON SMART COMPUTING AND ELECTRONIC ENTERPRISE (ICSCEE), 2018,