Removal of sulfonamide antibiotic resistant bacterial and intracellular antibiotic resistance genes by UVC-activated peroxymonosulfate

被引:71
|
作者
Hu, Yaru [1 ]
Zhang, Tianyang [1 ,2 ]
Jiang, Lei [3 ]
Yao, Shijie [1 ]
Ye, Hui [3 ]
Lin, Kuangfei [1 ]
Cui, Changzheng [1 ,2 ]
机构
[1] East China Univ Sci & Technol, State Environm Protect Key Lab Environm Risk Asse, Sch Resources & Environm Engn, Shanghai 200237, Peoples R China
[2] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China
[3] Natl Engn Res Ctr Urban Water Resources, Shanghai 200082, Peoples R China
基金
中国博士后科学基金;
关键词
UVC-activated peroxymonosulfate; Antibiotic resistant bacteria; Intracellular antibiotic resistance genes; Sulfate radical; Water treatment; DRINKING-WATER; RATE CONSTANTS; DNA-DAMAGE; DEGRADATION; INACTIVATION; OXIDATION; RIVER; IRRADIATION; MECHANISMS; DISINFECTION;
D O I
10.1016/j.cej.2019.02.207
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The inactivation of an isolated sulfonamide antibiotic resistant bacteria (ARB) HLS-6 and reduction of intracellular sul1 and intI1 in its genome by UVC irradiation, PMS oxidation and UVC-activated peroxymonosulfate (UVC/PMS) treatments were investigated in this study. The UVC/PMS treatment was superior to the other two methods in the inactivation of ARB and reduction of qPCR-sul1 and qPCR-intI1. The HLS-6 ARB (10(8) CFU/mL) could be effectively inactivated 5.3 log by UVC (100 mu W/cm(2))/PMS (1 mg/L), and the reduction rates of qPCR-sul1 and qPCR-intI1 by UVC (100 mu W/cm(2))/PMS (20 mg/L), reached up to 2.9 log and 3.4 log, respectively within 30 min. qPCR-intI1 reacted faster than qPCR-sul1 in all methods. Sulfate radical was responsible for the reduction of target genes, while hydroxyl radical had negligible effect on that. The dosage of PMS positively affected the reduction of both genes during UVC/PMS, while the initial concentration of ARB could negatively influence the reduction of target genes. The pH 5 of reaction solution was most beneficial to the reduction of ARGs. The reduction rates at pH 5 reached up to 3.1 log (sul1) and 3.3 log (intI1). The reduction of target genes was slightly facilitated in the initial 5 min and suppressed after 5 min with the co-existence of sulfamethoxazole. This study will provide a potential alternative method for controlling the antibiotic resistance in aquatic environment.
引用
收藏
页码:888 / 895
页数:8
相关论文
共 50 条
  • [1] Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate
    Zhou, Chun-shuang
    Wu, Ji-wen
    Dong, Li-li
    Liu, Bing-feng
    Xing, De-feng
    Yang, Shan-shan
    Wu, Xiu-kun
    Wang, Qi
    Fan, Jia-ning
    Feng, Li-ping
    Cao, Guang-li
    JOURNAL OF HAZARDOUS MATERIALS, 2020, 388
  • [2] Removal of antibiotic resistant bacteria and antibiotic resistance genes: a bibliometric review
    Wang, Yue
    Geng, Mengke
    Jia, Hui
    Cui, Junchi
    Zhang, Meng
    Zhao, Yingxin
    Wang, Jie
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2024, 18 (12)
  • [3] Removal of antibiotic resistance genes and inactivation of antibiotic-resistant bacteria by oxidative treatments
    Zhao, Xiaoyu
    Su, Haochang
    Xu, Wujie
    Hu, Xiaojuan
    Xu, Yu
    Wen, Guoliang
    Cao, Yucheng
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 778
  • [4] Investigation of Antibiotic-Resistant Bacterial Communities and Antibiotic-Resistant Genes in Wastewater Treatment Plants: Removal of Antibiotic-Resistant Genes by the BBR Process
    Zi-fan Weng
    Yu-qin He
    Guo-xiang Li
    Xiao-tong Wu
    Yi Dai
    Peng Bao
    Bulletin of Environmental Contamination and Toxicology, 2022, 108 : 284 - 291
  • [5] Investigation of Antibiotic-Resistant Bacterial Communities and Antibiotic-Resistant Genes in Wastewater Treatment Plants: Removal of Antibiotic-Resistant Genes by the BBR Process
    Weng, Zi-fan
    He, Yu-qin
    Li, Guo-xiang
    Wu, Xiao-tong
    Dai, Yi
    Bao, Peng
    BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2022, 108 (02) : 284 - 291
  • [6] Antibiotic resistant pathogenic bacteria and their resistance genes in bacterial biofilms
    Obst, Ursula
    Schwartz, T.
    Volkmann, H.
    International Journal of Artificial Organs, 2006, 29 (04): : 387 - 394
  • [7] Antibiotic resistant pathogenic bacteria and their resistance genes in bacterial biofilms
    Obst, U
    Schwartz, T
    Volkmann, H
    INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2006, 29 (04): : 387 - 394
  • [8] 3D ZnO/Activated Carbon Alginate Beads for the Removal of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes
    Liu, Zhe
    Yu, Xi
    Zhou, Zhenchao
    Zhou, Jinyu
    Shuai, Xinyi
    Lin, Zejun
    Chen, Hong
    POLYMERS, 2023, 15 (09)
  • [9] Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems
    Le, Thai-Hoang
    Ng, Charmaine
    Ngoc Han Tran
    Chen, Hongjie
    Gin, Karina Yew-Hoong
    WATER RESEARCH, 2018, 145 : 498 - 508
  • [10] Removal of antibiotic-resistant bacteria and genes by Solar-activated Ferrate/Peroxymonosulfate: Efficiency in aquaculture wastewater and mechanism
    Li, Ruixue
    Wu, Xudai
    Han, Zhenfei
    Xu, Lijie
    Gan, Lu
    Zhang, Yanqiong
    Lu, Fengru
    Lin, Hua
    Yang, Xue
    Yan, Muting
    Chu, Wei
    Gong, Han
    CHEMICAL ENGINEERING JOURNAL, 2023, 474