On the uniqueness of the solution to the three-body problem with zero-range interactions

被引:0
|
作者
Fedorov, D. V. [1 ]
Jensen, A. S. [1 ]
机构
[1] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
关键词
Skyrme Interaction; System Collapse; Variational Trial Function; Skyrme Potential;
D O I
10.1007/s00601-006-0150-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the uniqueness of the solution to a three-body problem with zero-range Skyrme interactions in configuration space. With the lowest, k(0), two-body term alone the problem is known to have no unique solution as the system collapses - the variational estimate of the energy tends towards negative infinity, the size of the system towards zero. We argue that the next, k(2), two-body term removes the collapse and the three-body system acquires finite ground-state energy and size. The three-body interaction term is thus not necessary to provide a unique solution to the problem.
引用
收藏
页码:75 / 78
页数:4
相关论文
共 50 条
  • [1] On the Uniqueness of the Solution to the Three-Body Problem with Zero-Range Interactions
    D. V. Fedorov
    A. S. Jensen
    Few-Body Systems, 2006, 38 : 75 - 78
  • [2] Minlos–Faddeev Regularization of Zero-Range Interactions in the Three-Body Problem
    O. I. Kartavtsev
    A. V. Malykh
    JETP Letters, 2022, 116 : 179 - 184
  • [3] Regularization of a three-body problem with zero-range potentials
    Fedorov, DV
    Jensen, AS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (30): : 6003 - 6012
  • [4] On renormalization of the three-body problem with zero-range potentials
    Fedorov, DV
    Jensen, AS
    NUCLEAR PHYSICS A, 2001, 689 (1-2) : 515C - 518C
  • [5] Minlos-Faddeev Regularization of Zero-range Interactions in the Three-body Problem
    Kartavtsev, O., I
    Malykh, A., V
    JETP LETTERS, 2022, 116 (03) : 179 - 184
  • [6] Three-Body Hamiltonian with Regularized Zero-Range Interactions in Dimension Three
    Basti, Giulia
    Cacciapuoti, Claudio
    Finco, Domenico
    Teta, Alessandro
    ANNALES HENRI POINCARE, 2023, 24 (01): : 223 - 276
  • [7] Three-Body Hamiltonian with Regularized Zero-Range Interactions in Dimension Three
    Giulia Basti
    Claudio Cacciapuoti
    Domenico Finco
    Alessandro Teta
    Annales Henri Poincaré, 2023, 24 : 223 - 276
  • [8] Two- and three-body problem with Floquet-driven zero-range interactions
    Sykes, A. G.
    Landa, H.
    Petrov, D. S.
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [9] D-dimensional three-body bound-state problem with zero-range interactions
    Rosa, D. S.
    Frederico, T.
    Krein, G.
    Yamashita, M. T.
    PHYSICAL REVIEW A, 2022, 106 (02)
  • [10] Multichannel Zero-Range Potentials in the Hyperspherical Theory of Three-Body Dynamics
    J. H. Macek
    Few-Body Systems, 2002, 31 : 241 - 248