Problem of a point defect, spatial regularization and intrinsic length scale in second gradient elasticity

被引:2
|
作者
Dobovsek, I [1 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Inst Math Phys & Mech, SI-1000 Ljubljana, Slovenia
关键词
non-local theory; strain gradient elasticity; point defect; intrinsic length scale;
D O I
10.1016/j.msea.2005.11.067
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We consider a problem of an eigenstrain, induced by a point defect embedded in an isotropic, non-locally elastic crystal, where non-locality originates from the higher gradient of strain. We analyze interaction between the microscopic and macroscopic stress and strain fields and give interpretation of the emerging intrinsic length scale effect. We also discuss particular features of spatial regularization as a direct consequence of incorporating the higher gradient of strain in the resulting set of field equations. (c) 2006 Elsevier B.V All right reserved.
引用
收藏
页码:92 / 96
页数:5
相关论文
共 26 条
  • [1] Inclusion problem in second gradient elasticity
    Ma, Hansong
    Hu, Gengkai
    Wei, Yueguang
    Liang, Lihong
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2018, 132 : 60 - 78
  • [2] Determination of the Material Intrinsic Length Scale of Gradient Plasticity Theory
    Abu Al-Rub, Rashid K.
    Voyiadjis, George Z.
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2004, 2 (03) : 377 - 400
  • [3] Determination of the material intrinsic length scale of gradient plasticity theory
    Voyiadjis, GZ
    Abu Al-Rub, R
    IUTAM SYMPOSIUM ON MULTISCALE MODELING AND CHARACTERIZATION OF ELASTIC-INELASTIC BEHAVIOR OF ENGINEERING MATERIALS, PROCEEDINGS, 2004, 114 : 167 - 174
  • [4] A boundary element based solution of an inverse elasticity problem by conjugate gradient and regularization method
    Huang, CH
    Shih, WY
    PROCEEDINGS OF THE SEVENTH (1997) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL IV, 1997, 1997, : 388 - 395
  • [5] Estimation of Length Scale Parameter in Second-Gradient Continua
    Okatev, Roman S.
    Zubko, Ivan Yu.
    28TH RUSSIAN CONFERENCE ON MATHEMATICAL MODELLING IN NATURAL SCIENCES, 2020, 2216
  • [6] Gradient Elasticity Length Scale Validation Using Static Fracture Experiments of Pmma and PVC
    Askes, Harm
    Calik-Karakose, Ulku H.
    Susmel, Luca
    INTERNATIONAL JOURNAL OF FRACTURE, 2012, 176 (02) : 223 - 227
  • [7] Gradient Elasticity Length Scale Validation Using Static Fracture Experiments of Pmma and PVC
    Harm Askes
    Ülkü H. Çalık-Karaköse
    Luca Susmel
    International Journal of Fracture, 2012, 176 : 223 - 227
  • [8] Spatial gradient measurement through length scale estimation for the tracking of a gaseous source
    Court, Jeffrey R.
    Demetriou, Michael A.
    Gatsonis, Nikolaos A.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 2984 - 2989
  • [9] Finite-Element Analysis of Polyhedra under Point and Line Forces in Second-Strain Gradient Elasticity
    Reiher, Jorg Christian
    Giorgio, Ivan
    Bertram, Albrecht
    JOURNAL OF ENGINEERING MECHANICS, 2017, 143 (02)
  • [10] Gradient elasticity and dispersive wave propagation: Model motivation and length scale identification procedures in concrete and composite laminates
    De Domenico, Dario
    Askes, Harm
    Aifantis, Elias C.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2019, 158 : 176 - 190