Radio frequency interference mitigation using pseudoinverse learning autoencoders

被引:7
|
作者
Wang, Hong-Feng [1 ,2 ,3 ,5 ]
Yuan, Mao [2 ,6 ]
Yin, Qian [1 ]
Guo, Ping [4 ]
Zhu, Wei-Wei [2 ]
Li, Di [2 ,6 ,8 ]
Feng, Si-Bo [7 ]
机构
[1] Beijing Normal Univ, Sch Artificial Intelligence, Image Proc & Pattern Recognit Lab, Beijing 100875, Peoples R China
[2] Chinese Acad Sci, Natl Astron Observ, CAS Key Lab FAST, Beijing 100101, Peoples R China
[3] Dezhou Univ, Sch Informat Management, Dezhou 253023, Peoples R China
[4] Beijing Normal Univ, Sch Syst Sci, Image Proc & Pattern Recognit Lab, Beijing 100875, Peoples R China
[5] Dezhou Univ, Inst Astron Sci, Dezhou 253023, Peoples R China
[6] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[7] Hanvon Technol Co Ltd, Beijing 100193, Peoples R China
[8] Univ KwaZulu Natal, NAOC UKZN Computat Astrophys Ctr, ZA-4000 Durban, South Africa
基金
中国国家自然科学基金;
关键词
pulsars; general; methods; numerical; data analysis; CLASSIFICATION; TELESCOPE; SOFTWARE; REMOVAL; ARRAYS;
D O I
10.1088/1674-4527/20/8/114
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Radio frequency interference (RFI) is an important challenge in radio astronomy. RFI comes from various sources and increasingly impacts astronomical observation as telescopes become more sensitive. In this study, we propose a fast and effective method for removing RFI in pulsar data. We use pseudo-inverse learning to train a single hidden layer auto-encoder (AE). We demonstrate that the AE can quickly learn the RFI signatures and then remove them from fast-sampled spectra, leaving real pulsar signals. This method has the advantage over traditional threshold-based filter method in that it does not completely remove contaminated channels, which could also contain useful astronomical information.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Radio frequency interference mitigation using pseudoinverse learning autoencoders
    Hong-Feng Wang
    Mao Yuan
    Qian Yin
    Ping Guo
    Wei-Wei Zhu
    Di Li
    Si-Bo Feng
    Research in Astronomy and Astrophysics, 2020, 20 (08) : 11 - 18
  • [2] Machine learning for Radio Frequency Interference Mitigation using Polarization
    Mosiane, Olorato
    Oozeer, Nadeem
    Bassett, Bruce A.
    2017 IEEE RADIO AND ANTENNA DAYS OF THE INDIAN OCEAN (RADIO), 2017,
  • [3] Mitigation of Radio Frequency Interference in the Solar Radio Spectrum Based on Deep Learning
    Jun Cheng
    Yanzuo Li
    Yanjun Zhang
    Yihua Yan
    Chengming Tan
    Linjie Chen
    Wei Wang
    Solar Physics, 2022, 297
  • [4] Mitigation of Radio Frequency Interference in the Solar Radio Spectrum Based on Deep Learning
    Cheng, Jun
    Li, Yanzuo
    Zhang, Yanjun
    Yan, Yihua
    Tan, Chengming
    Chen, Linjie
    Wang, Wei
    SOLAR PHYSICS, 2022, 297 (04)
  • [5] Radio Frequency Interference Identification and Mitigation in Pulsar Observations Using Machine Learning Techniques
    McCarty, Mike
    Doran, Gary
    Lazio, T. Joseph W.
    Thompson, David R.
    Ford, John
    Prestage, Richard
    2013 US NATIONAL COMMITTEE OF URSI NATIONAL RADIO SCIENCE MEETING (USNC-URSI NRSM), 2013,
  • [6] Radio frequency interference mitigation in radioastronomy
    Kesteven, M
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 873 - 876
  • [7] HF Radio-Frequency Interference Mitigation
    Chen, Gang
    Zhao, Zhengyu
    Zhu, Guoqiang
    Huang, Yujie
    Li, Ting
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (03) : 479 - 482
  • [8] Bayesian approach to radio frequency interference mitigation
    Leeney, S. A. K.
    Handley, W. J.
    Acedo, E. de Lera
    PHYSICAL REVIEW D, 2023, 108 (06)
  • [9] Radio frequency interference mitigation algorithm in ionosonde
    Chen, Kun
    Zhu, Zhengping
    Ning, Baiqi
    Lan, Jiaping
    Sun, Fenglou
    Dianbo Kexue Xuebao/Chinese Journal of Radio Science, 2013, 28 (02): : 391 - 396
  • [10] An Optical Technique for Radio Frequency Interference Mitigation
    Urick, Vincent J.
    Diehl, John F.
    Sunderman, Christopher E.
    McKinney, Jason D.
    Williams, Keith J.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2015, 27 (12) : 1333 - 1336