Improved near-Earth object detection using Dynamic Logic

被引:0
|
作者
Allen, Thomas G. [1 ]
O'Connor, Alan C. [1 ]
Ternovskiy, Igor [1 ]
机构
[1] USAF, Res Lab, Sensors Directorate, Wright Patterson AFB, OH 45433 USA
来源
CYBER SENSING 2012 | 2012年 / 8408卷
关键词
asteroid; comet; NEO; Dynamic Logic; track-before-detect; Kalman filter;
D O I
10.1117/12.921223
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Current efforts aimed at detecting and identifying Near Earth Objects (NEOs) that pose potential risks to Earth use moderately sized telescopes combined with image processing algorithms to detect the motion of these objects. The search strategies of such systems involve multiple revisits at given intervals between observations to the same area of the sky so that objects that appear to move between the observations can be identified against the static star field. Dynamic Logic algorithm, derived from Modeling Field Theory, has made significant improvements in detection, tracking, and fusion of ground radar images. As an extension to this, the research in this paper will examine Dynamic Logic's ability to detect NEOs with minimal human-in-the-loop intervention. Although the research in this paper uses asteroids for the automation detection, the ultimate extension to this study is for detecting orbital debris. Many asteroid orbits are well defined, so they will serve as excellent test cases for our new algorithm application.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Optimal detection of near-earth object threats
    Canavan, GH
    NEAR-EARTH OBJECTS: UNITED NATIONS INTERNATIONAL CONFERENCE, 1997, 822 : 539 - 543
  • [2] Near-Earth Object
    Shoptaw, John
    POETRY, 2019, 213 (04) : 321 - 321
  • [3] COMPUTER-AIDED NEAR-EARTH OBJECT DETECTION
    SCOTTI, JV
    ASTEROIDS, COMETS, METEORS 1993, 1994, (160): : 17 - 30
  • [4] The near-earth object population
    Gladman, B
    Michel, P
    Froeschlé, C
    ICARUS, 2000, 146 (01) : 176 - 189
  • [5] Near-Earth object deflection using conventional explosives
    Walker, J. D.
    Chocron, S.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2008, 35 (12) : 1473 - 1477
  • [6] Near-Earth Object Observations using Synthetic Tracking
    Zhai, Chengxing
    Shao, Michael
    Saini, Navtej
    Choi, Philip
    Evans, Nez
    Trahan, Russell
    Nazli, Kutay
    Zhan, Max
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2024, 136 (03)
  • [7] Directed energy active illumination for near-Earth object detection
    Riley, Jordan
    Lubin, Philip
    Hughes, Gary B.
    O'Neill, Hugh
    Meinhold, Peter
    Suen, Jonathan
    Bible, Johanna
    Johansson, Isabella E.
    Griswold, Janelle
    Cook, Brianna
    NANOPHOTONICS AND MACROPHOTONICS FOR SPACE ENVIRONMENTS VIII, 2014, 9226
  • [8] Identifying near-Earth object families
    Fu, H
    Jedicke, R
    Durda, DD
    Fevig, R
    Scotti, JV
    ICARUS, 2005, 178 (02) : 434 - 449
  • [9] A near-Earth object hazard index
    Binzel, RP
    NEAR-EARTH OBJECTS: UNITED NATIONS INTERNATIONAL CONFERENCE, 1997, 822 : 545 - 551
  • [10] The Near-Earth Object Surveyor Mission
    Mainzer, A. K.
    Masiero, J. R.
    Abell, Paul A.
    Bauer, J. M.
    Bottke, William
    Buratti, Bonnie J.
    Carey, Sean J.
    Cotto-Figueroa, D.
    Cutri, R. M.
    Dahlen, D.
    Eisenhardt, Peter R. M.
    Fernandez, Y. R.
    Furfaro, Roberto
    Grav, Tommy
    Hoffman, T. L.
    Kelley, Michael S.
    Kim, Yoonyoung
    Kirkpatrick, J. Davy
    Lawler, Christopher R.
    Lilly, Eva
    Liu, X.
    Marocco, Federico
    Marsh, K. A.
    Masci, Frank J.
    Mcmurtry, Craig W.
    Pourrahmani, Milad
    Reinhart, Lennon
    Ressler, Michael E.
    Satpathy, Akash
    Schambeau, C. A.
    Sonnett, S.
    Spahr, Timothy B.
    Surace, Jason A.
    Vaquero, Mar
    Wright, E. L.
    Zengilowski, Gregory R.
    PLANETARY SCIENCE JOURNAL, 2023, 4 (12):