Bounds for the Super Extra Edge Connectivity of Graphs

被引:4
|
作者
Cheng, Chia-Wen [1 ]
Hsieh, Sun-Yuan [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 701, Taiwan
来源
COMPUTING AND COMBINATORICS | 2015年 / 9198卷
关键词
Extra edge-connectivity; Fault tolerance; Super extra edge connectivity; CUTS LEAVING COMPONENTS; SUFFICIENT CONDITIONS; EXTRACONNECTIVITY; PRODUCT; ORDER;
D O I
10.1007/978-3-319-21398-9_49
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let G be a connected graph, S be a subset of edges in G, and k be a positive integer. If G - S is disconnected and every component has at least k vertices, then S is a k-extra edge-cut of G. The k-extra edge-connectivity, denoted by lambda(k)(G), is the minimum cardinality over all k-extra edge-cuts of G. If lambda(k)(G) exists and at least one component of G - S contains exactly k vertices for any minimum k-extra edge-cut S, then G is super lambda(k). Moreover, when G is super-lambda(k), the persistence of G, denoted by rho(k)(G), is the maximum integer m for which G - F is still super-lambda(k) for any set F subset of E(G) with vertical bar F vertical bar <= m. It has been shown that the bounds of rho(k)(G) when k is an element of {1, 2}. This study shows the bounds of rho(k)(G) when k >= 3.
引用
收藏
页码:624 / 631
页数:8
相关论文
共 50 条
  • [1] Edge connectivity and super edge-connectivity of jump graphs
    Chen, Xing
    Liu, Juan
    Xie, Dongyang
    Meng, Jixiang
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2016, 37 (02): : 233 - 246
  • [2] Relationship between extra edge connectivity and component edge connectivity for regular graphs
    Hao, Rong-Xia
    Gu, Mei-Mei
    Chang, Jou-Ming
    THEORETICAL COMPUTER SCIENCE, 2020, 833 : 41 - 55
  • [3] Super Connectivity and Super Edge-connectivity of Transformation Graphs G+-+
    Chen, Jinyang
    Huang, Lihong
    Zhou, Jiang
    ARS COMBINATORIA, 2012, 105 : 103 - 115
  • [4] Super edge connectivity of direct product of graphs
    Cheng, Huiwen
    Ma, Xiaoxia
    Du, Xiaojing
    ARS COMBINATORIA, 2018, 140 : 329 - 336
  • [5] SUPER EDGE CONNECTIVITY OF KRONECKER PRODUCTS OF GRAPHS
    Cao, Xiang-Lan
    Vumar, Elkin
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2014, 25 (01) : 59 - 65
  • [6] On super edge-connectivity of product graphs
    Lue, Min
    Chen, Guo-Liang
    Xu, Xi-Rong
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 900 - 306
  • [7] On the Super (Edge)-Connectivity of Generalized Johnson Graphs
    Yu, Zhecheng
    Xu, Liqiong
    Wu, Xuemin
    Zheng, Chuanye
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2024, 35 (05) : 579 - 593
  • [8] THE SUPER EDGE CONNECTIVITY OF KRONECKER PRODUCT GRAPHS
    Ekinci, Gulnaz Boruzanli
    Kirlangic, Alpay
    RAIRO-OPERATIONS RESEARCH, 2018, 52 (02) : 561 - 566
  • [9] Super Restricted Edge Connectivity of Regular Graphs
    Ou Jianping
    Fuji Zhang
    Graphs and Combinatorics, 2005, 21 : 459 - 467
  • [10] Super restricted edge connectivity of regular graphs
    Ou, JP
    Zhang, FJ
    GRAPHS AND COMBINATORICS, 2005, 21 (04) : 459 - 467