Cohomological and homotopical classification of singular extensions of categorical groups

被引:1
|
作者
Carrasco, PC [1 ]
Garzón, AR [1 ]
Miranda, JG [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Algebra, E-18071 Granada, Spain
关键词
D O I
10.1016/S0764-4442(99)80471-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If G is a categorical group, a G-module is defined to be a braided categorical group (A, c) together with an action of G on (A; c). We associate to any G-module (A, c) a Kan simplicial set Ner(G, (A; c)) and a Kan fibration Ner(G, (A, c)) phi<($)under right arrow> Ner(G). In addition, we define the set of equivalence classes of singular extensions of G by (A, c), and also a 1-cohomology set of G with coefficients in (A; c). We construct bijections between these sets, and also with the set of fibre homotopy classes of cross-sections of the fibration phi. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:107 / 112
页数:6
相关论文
共 50 条
  • [1] Schreier theory for singular extensions of categorical groups and homotopy classification
    Carrasco, P
    Garzón, AR
    Miranda, JG
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (05) : 2585 - 2613
  • [2] CENTRAL EXTENSIONS OF CATEGORICAL GROUPS BY BRAIDED CATEGORICAL GROUPS
    CARRASCO, P
    CEGARRA, AM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (05): : 527 - 530
  • [3] Equivariant extensions of categorical groups
    Garzón, AR
    Del Río, A
    APPLIED CATEGORICAL STRUCTURES, 2005, 13 (02) : 131 - 140
  • [4] Equivariant Extensions of Categorical Groups
    A. R. Garzón
    A. del Río
    Applied Categorical Structures, 2005, 13 : 131 - 140
  • [5] Singular extensions and the second cohomology categorical group
    A. R. Garzón
    Journal of Homotopy and Related Structures, 2017, 12 : 447 - 485
  • [6] Singular extensions and the second cohomology categorical group
    Garzon, A. R.
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2017, 12 (02) : 447 - 485
  • [7] Obstruction theory for extensions of categorical groups
    Carrasco, P
    Garzón, AR
    APPLIED CATEGORICAL STRUCTURES, 2004, 12 (01) : 35 - 61
  • [8] Obstruction Theory for Extensions of Categorical Groups
    P. Carrasco
    A. R. Garzón
    Applied Categorical Structures, 2004, 12 : 35 - 61
  • [9] Schreier theory for central extensions of categorical groups
    Carrasco, P
    Cegarra, AM
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (13) : 4059 - 4112
  • [10] On graded categorical groups and equivariant group extensions
    Cegarra, AM
    García-Calcines, JM
    Ortega, JA
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (05): : 970 - 997