Magnetic Frequency Tuning of a Multimodal Vibration Energy Harvester

被引:30
|
作者
Bouhedma, Sofiane [1 ]
Zheng, Yuhang [1 ]
Lange, Fred [1 ]
Hohlfeld, Dennis [1 ]
机构
[1] Univ Rostock, Fac Comp Sci & Elect Engn, Inst Elect Appliances & Circuits, Albert Einstein Str 2, D-18059 Rostock, Germany
关键词
energy harvesting; vibration; piezoelectricity; nonlinear resonators; magnetic frequency tuning; multimodal structures; bi-stability;
D O I
10.3390/s19051149
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, we present a novel vibration-based piezoelectric energy harvester, capable of collecting power at multiple operating frequencies and autonomously adapting itself to the dominant ambient frequencies. It consists of a compact dual-frequency resonator designed such that the first two fundamental natural frequencies are in the range of [50, 100] Hz, which is a typical frequency range for ambient vibrations in industrial environments. A magnetic frequency-tuning scheme is incorporated into the structure, which enables the frequency agility of the system. In contrast to single frequency harvesters, the presented approach combines multi-resonance and frequency tunability of both modes enabling a larger operative bandwidth. We experimentally demonstrate independent bi-directional tunability of our dual-frequency design. Furthermore, a control algorithm based on maximum amplitude tracking has been implemented for self-adaption of the system. The latter has been demonstrated in a system-level simulation model, which integrates the dual-frequency resonator, the magnetic tuning, and the control algorithm.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Resonant frequency tuning of an industrial vibration energy harvester
    Toh, T. T.
    Wright, S. W.
    Mitcheson, P. D.
    14TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2014), 2014, 557
  • [2] A Vibration Energy Harvester With Targeted Frequency-Tuning Capability
    Li, Yunjia
    Zhou, Chenyuan
    Wang, Xinyi
    Wang, Junyuan
    Qiao, Dayong
    Tao, Kai
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [3] Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester
    Podder, Pranay
    Constantinou, Peter
    Mallick, Dhiman
    Amann, Andreas
    Roy, Saibal
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2017, 26 (03) : 539 - 549
  • [4] Design and experiment of piezoelectric multimodal energy harvester for low frequency vibration
    Toyabur, R. M.
    Salauddin, M.
    Park, Jae Y.
    CERAMICS INTERNATIONAL, 2017, 43 : S675 - S681
  • [5] Frequency tuning design for vibration-driven electromagnetic energy harvester
    Lee, Byung-Chul
    Chung, Gwiy-Sang
    IET RENEWABLE POWER GENERATION, 2015, 9 (07) : 801 - 808
  • [6] Resonant frequency tuning of a novel piezoelectric vibration energy harvester (PVEH)
    Raghavan, Sreekumari
    Sharma, Ashutosh
    Gupta, Rishi
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (20) : 4984 - 4999
  • [7] A Novel Frequency Tuning Design for Vibration-Driven Electromagnetic Energy Harvester
    Lee, Byung-Chul
    Chung, Gwiy-Sang
    2015 IEEE SENSORS, 2015, : 386 - 389
  • [9] Design and simulation of a frequency self-tuning vibration energy harvester for rotational applications
    Licheng Deng
    Jian Jiang
    Lin Zhou
    Dingli Zhang
    Yuming Fang
    Microsystem Technologies, 2021, 27 : 2857 - 2862
  • [10] Design and modeling a frequency self-tuning vibration energy harvester for rotational applications
    Deng, Licheng
    Jiang, Jian
    Zhang, Dingli
    Zhou, Lin
    Fang, Yuming
    ENERGY, 2021, 235 (235)