PREDICTION MODEL FOR IDENTIFYING PATIENTS WITH LIPODYSTROPHY IN ELECTRONIC HEALTH RECORDS

被引:0
|
作者
Houben, E. [1 ]
Bakker, M. [1 ]
Colbaugh, R. [2 ]
Glass, K. [2 ]
Rudolf, C. [2 ]
Tremblay, M. [2 ]
Herings, R. M. [1 ]
机构
[1] PHARMO Inst Drug Outcomes Res, Utrecht, Netherlands
[2] Volv Global SA, Lausanne, Switzerland
关键词
D O I
10.1016/j.jval.2018.09.2233
中图分类号
F [经济];
学科分类号
02 ;
摘要
PRM113
引用
收藏
页码:S375 / S375
页数:1
相关论文
共 50 条
  • [1] Prediction model for identifying patients with lipodystrophy in electronic health records
    Houben, Eline
    Bakker, Marina
    Colbaugh, Rich
    Glass, Kristin
    Rudolf, Christopher
    Tremblay, Mike
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2019, 28 : 261 - 261
  • [2] Prediction algorithm for identifying patients with Fabry or Pompe disease in electronic health records
    Jansen, Ella
    Verkleij, Lars
    Colbaugh, Rich
    Glass, Kristin
    Rudolf, Christopher
    Herings, Ron
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2021, 30 : 17 - 17
  • [3] Identifying the essential properties of electronic health records
    de Albergaria, Elisa Tuler
    Bax, Marcello Peixoto
    Prates, Raquel Oliveira
    Nogueira Reis, Zilma Silveira
    ATOZ-NOVAS PRATICAS EM INFORMACAO E CONHECIMENTO, 2016, 5 (01): : 33 - 43
  • [4] Risk Prediction With Electronic Health Records
    Goldstein, Benjamin A.
    Navar, Ann Marie
    Pencina, Michael J.
    JAMA CARDIOLOGY, 2016, 1 (09) : 976 - 977
  • [5] Collaborative Prediction Model of Disease Risk by Mining Electronic Health Records
    Zhang, Shuai
    Liu, Lei
    Li, Hui
    Cui, Lizhen
    COLLABORATE COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING, COLLABORATECOM 2016, 2017, 201 : 71 - 82
  • [6] Challenges with Accuracy of Gender Fields in Identifying Transgender Patients in Electronic Health Records
    Dinah Foer
    David M. Rubins
    Anthony Almazan
    Kit Chan
    David W. Bates
    Ole-Petter R. Hamnvik
    Journal of General Internal Medicine, 2020, 35 : 3724 - 3725
  • [7] IDENTIFYING CHILDHOOD CANCER PATIENTS IN NEED FOR SUPPORT - PSYCHOSOCIAL RISK PREDICTION FROM ELECTRONIC HEALTH RECORDS WITH MACHINE LEARNING
    Lahteenmaki, Paivi
    Reunamo, Akseli
    Salantera, Sanna
    Moen, Hans
    PEDIATRIC BLOOD & CANCER, 2022, 69 : S493 - S493
  • [8] Challenges with Accuracy of Gender Fields in Identifying Transgender Patients in Electronic Health Records
    Foer, Dinah
    Rubins, David M.
    Almazan, Anthony
    Chan, Kit
    Bates, David W.
    Hamnvik, Ole-Petter R.
    JOURNAL OF GENERAL INTERNAL MEDICINE, 2020, 35 (12) : 3724 - 3725
  • [9] Electronic health records model to improve the quality of patients' healthcare
    Motsi, Lovemore
    HEALTH SA GESONDHEID, 2024, 29
  • [10] Personalized event prediction for Electronic Health Records
    Lee, Jeong Min
    Hauskrecht, Milos
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2023, 143