TRANSMISSION EIGENVALUES

被引:129
|
作者
Paivarinta, Lassi [1 ]
Sylvester, John [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
芬兰科学院;
关键词
inverse scattering; Helmholtz equation; inverse problems; transmission eigenvalues;
D O I
10.1137/070697525
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The scattering of a time-harmonic plane wave in an inhomogeneous medium is modeled by the scattering problem for the Helmholtz equation. A transmission eigenvalue is a wavenumber at which the scattering operator has a nontrivial kernel or cokernel. Because many sampling methods for locating scatterers succeed only at wavenumbers that are not transmission eigenvalues, they have been studied for some time. Nevertheless, the existence of transmission eigenvalues has previously been proved only for radial scatterers. In this paper, we prove existence for scatterers without radial symmetry.
引用
收藏
页码:738 / 753
页数:16
相关论文
共 50 条
  • [1] ON THE EXISTENCE OF TRANSMISSION EIGENVALUES
    Kirsch, Andreas
    INVERSE PROBLEMS AND IMAGING, 2009, 3 (02) : 155 - 172
  • [2] A NOTE ON TRANSMISSION EIGENVALUES IN
    Cakoni, Fioralba
    Meng, Shixu
    Xiao, Jingni
    INVERSE PROBLEMS AND IMAGING, 2021, 15 (05) : 999 - 1014
  • [3] The Existence of Transmission Eigenvalues
    INVERSE SCATTERING THEORY AND TRANSMISSION EIGENVALUES, 2016, : 125 - 172
  • [4] Complex eigenvalues and the inverse spectral problem for transmission eigenvalues
    Colton, David
    Leung, Yuk-J
    INVERSE PROBLEMS, 2013, 29 (10)
  • [5] THE INTERIOR TRANSMISSION PROBLEM AND BOUNDS ON TRANSMISSION EIGENVALUES
    Hitrik, Michael
    Krupchyk, Katsiaryna
    Ola, Petri
    Paivarinta, Lassi
    MATHEMATICAL RESEARCH LETTERS, 2011, 18 (02) : 279 - 293
  • [6] Interior transmission eigenvalues of a rectangle
    Sleeman, B. D.
    Stocks, D. C.
    INVERSE PROBLEMS, 2016, 32 (02)
  • [7] Transmission eigenvalues in one dimension
    Sylvester, John
    INVERSE PROBLEMS, 2013, 29 (10)
  • [8] TRANSMISSION EIGENVALUES FOR MULTIPOINT SCATTERERS
    Grinevich, P. G.
    Novikov, R. G.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2021, 9 (04): : 17 - 25
  • [9] A perturbation problem for transmission eigenvalues
    Ambrose, David M.
    Cakoni, Fioralba
    Moskow, Shari
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (01)
  • [10] TRANSMISSION EIGENVALUES FOR ELLIPTIC OPERATORS
    Hitrik, Michael
    Krupchyk, Katsiaryna
    Ola, Petri
    Paivarinta, Lassi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (06) : 2630 - 2639