Zero-Cost Estimation of Zero-Point Energies

被引:8
|
作者
Csaszar, Attila G. [1 ]
Furtenbacher, Tibor
机构
[1] MTA ELTE Complex Chem Syst Res Grp, H-1518 Budapest 112, Hungary
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2015年 / 119卷 / 40期
基金
匈牙利科学研究基金会;
关键词
MOLECULAR VIBRATIONAL ANHARMONICITY; HIGHER-DERIVATIVE METHODS; HARTREE-FOCK; PERTURBATIVE APPROACH; ROTATION INTERACTION; HEAT; ENTHALPIES; BOND; THERMOCHEMISTRY; THERMODYNAMICS;
D O I
10.1021/acs.jpca.5b07156
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An additive, linear, atom-type-based (ATB) scheme is developed allowing no-cost estimation of zero-point vibrational energies (ZPVE) of neutral, closed-shell molecules in their ground electronic states. The atom types employed correspond to those defined within the MM2 molecular mechanics force field approach. The reference training set of 156 molecules cover chained and branched alkanes, alkenes, cycloalkanes and cycloalkenes, alkynes, alcohols, aldehydes, carboxylic acids, amines, amides, ethers, esters, ketones, benzene derivatives, heterocycles, nucleobases, all the natural amino acids, some dipeptides and sugars, as well as further simple molecules and ones containing several structural units, including several vitamins. A weighted linear least-squares fit of atom-type-based ZPVE increments results in recommended values for the following atoms, with the number of atom types defined in parentheses: H(8), D(1), B(1), C(6), N(7), O(3), F(1), Si(1), P(2), S(3), and Cl(1). The average accuracy of the ATB ZPVEs is considerably better than 1 kcal mol(-1), that is, better than chemical accuracy. The proposed ATB scheme could be extended to many more atoms and atom types, following a careful validation procedure; deviation from the MM2 atom types seems to be necessary, especially for third-row elements.
引用
收藏
页码:10229 / 10240
页数:12
相关论文
共 50 条
  • [1] ESTIMATION OF ZERO-POINT ENERGIES OF BROMO AND THIO COMPOUNDS
    IBRAHIM, MR
    FATAFTAH, ZA
    CHEMICAL PHYSICS LETTERS, 1987, 136 (06) : 583 - 587
  • [2] Rapid estimation of vibrational zero-point energies of silicon compounds
    Rahal, Mahmoud
    Bouabdallah, Ibrahim
    El Hajbi, Abdeslam
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2013, 1017 : 182 - 187
  • [3] A METHOD FOR COMPUTING ZERO-POINT ENERGIES
    HIGGS, PW
    JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (07): : 1300 - 1300
  • [4] Zero-point energies of subharmonic oscillators
    Bhattacharyya, K
    Bhattacharjee, JK
    PHYSICS LETTERS A, 2004, 331 (05) : 288 - 291
  • [5] Zero-point oscillations, zero-point fluctuations, and fluctuations of zero-point oscillations
    Khalili, FY
    PHYSICS-USPEKHI, 2003, 46 (03) : 293 - 307
  • [6] Estimation, computation, and experimental correction of molecular zero-point vibrational energies
    Csonka, GI
    Ruzsinszky, A
    Perdew, JP
    JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (30): : 6779 - 6789
  • [7] DILUTION OF ZERO-POINT ENERGIES IN THE COSMOLOGICAL EXPANSION
    Branchina, Vincenzo
    Zappala, Dario
    MODERN PHYSICS LETTERS A, 2010, 25 (27) : 2305 - 2312
  • [8] NOTE ON CALCULATION OF ZERO-POINT ENERGIES AND ISOTOPIC ZERO-POINT ENERGY DIFFERENCES BY A TAYLORS SERIES EXPANSION
    BIGELEISEN, J
    WOLFSBERG, M
    WESTON, RE
    ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1963, A 18 (02): : 210 - &
  • [9] ZERO-POINT ENERGIES IN THE DECOMPOSITION OF PARAFFIN MOLECULES
    BELL, RP
    TRANSACTIONS OF THE FARADAY SOCIETY, 1949, 45 (10): : 946 - 948
  • [10] Vibrational zero-point energies of bromo compounds
    Rahal, A
    El Hajbi, A
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2004, 668 (2-3): : 197 - 200