Predicting 3D genome folding from DNA sequence with Akita

被引:167
作者
Fudenberg, Geoff [1 ]
Kelley, David R. [2 ]
Pollard, Katherine S. [1 ,3 ,4 ,5 ]
机构
[1] Gladstone Inst Data Sci & Biotechnol, San Francisco, CA 94158 USA
[2] Calico Life Sci LLC, San Francisco, CA 94080 USA
[3] Univ Calif San Francisco, Dept Epidemiol & Biostat, Inst Human Genet, Quantitat Biol Inst, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Inst Computat Hlth Sci, San Francisco, CA 94143 USA
[5] Chan Zuckerberg Biohub, San Francisco, CA 94143 USA
关键词
CTCF; DOMAINS; BINDING; COHESIN; YY1; MAP;
D O I
10.1038/s41592-020-0958-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In interphase, the human genome sequence folds in three dimensions into a rich variety of locus-specific contact patterns. Cohesin and CTCF (CCCTC-binding factor) are key regulators; perturbing the levels of either greatly disrupts genome-wide folding as assayed by chromosome conformation capture methods. Still, how a given DNA sequence encodes a particular locus-specific folding pattern remains unknown. Here we present a convolutional neural network, Akita, that accurately predicts genome folding from DNA sequence alone. Representations learned by Akita underscore the importance of an orientation-specific grammar for CTCF binding sites. Akita learns predictive nucleotide-level features of genome folding, revealing effects of nucleotides beyond the core CTCF motif. Once trained, Akita enables rapid in silico predictions. Accounting for this, we demonstrate how Akita can be used to perform in silico saturation mutagenesis, interpret eQTLs, make predictions for structural variants and probe species-specific genome folding. Collectively, these results enable decoding genome function from sequence through structure. Akita enables three-dimensional genome folding predictions from DNA sequence using a convolutional neural network.
引用
收藏
页码:1111 / +
页数:24
相关论文
共 57 条
[1]  
Abadi Martin, 2016, Proceedings of OSDI '16: 12th USENIX Symposium on Operating Systems Design and Implementation. OSDI '16, P265
[2]   Cooler: scalable storage for Hi-C data and other genomically labeled arrays [J].
Abdennur, Nezar ;
Mirny, Leonid A. .
BIOINFORMATICS, 2020, 36 (01) :311-316
[3]   The GTEx Consortium atlas of genetic regulatory effects across human tissues [J].
Aguet, Francois ;
Barbeira, Alvaro N. ;
Bonazzola, Rodrigo ;
Brown, Andrew ;
Castel, Stephane E. ;
Jo, Brian ;
Kasela, Silva ;
Kim-Hellmuth, Sarah ;
Liang, Yanyu ;
Parsana, Princy ;
Flynn, Elise ;
Fresard, Laure ;
Gamazon, Eric R. ;
Hamel, Andrew R. ;
He, Yuan ;
Hormozdiari, Farhad ;
Mohammadi, Pejman ;
Munoz-Aguirre, Manuel ;
Ardlie, Kristin G. ;
Battle, Alexis ;
Bonazzola, Rodrigo ;
Brown, Christopher D. ;
Cox, Nancy ;
Dermitzakis, Emmanouil T. ;
Engelhardt, Barbara E. ;
Garrido-Martin, Diego ;
Gay, Nicole R. ;
Getz, Gad ;
Guigo, Roderic ;
Hamel, Andrew R. ;
Handsaker, Robert E. ;
He, Yuan ;
Hoffman, Paul J. ;
Hormozdiari, Farhad ;
Im, Hae Kyung ;
Jo, Brian ;
Kasela, Silva ;
Kashin, Seva ;
Kim-Hellmuth, Sarah ;
Kwong, Alan ;
Lappalainen, Tuuli ;
Li, Xiao ;
Liang, Yanyu ;
MacArthur, Daniel G. ;
Mohammadi, Pejman ;
Montgomery, Stephen B. ;
Munoz-Aguirre, Manuel ;
Rouhana, John M. ;
Hormozdiari, Farhad ;
Im, Hae Kyung .
SCIENCE, 2020, 369 (6509) :1318-1330
[4]   Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J].
Alipanahi, Babak ;
Delong, Andrew ;
Weirauch, Matthew T. ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :831-+
[5]  
[Anonymous], 2019, DEEPC PREDICTING CHR, DOI DOI 10.1101/724005
[6]   YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment [J].
Beagan, Jonathan A. ;
Duong, Michael T. ;
Titus, Katelyn R. ;
Zhou, Linda ;
Cao, Zhendong ;
Ma, Jingjing ;
Lachanski, Caroline V. ;
Gillis, Daniel R. ;
Phillips-Cremins, Jennifer E. .
GENOME RESEARCH, 2017, 27 (07) :1139-1152
[7]   Quantitative prediction of enhancer-promoter interactions [J].
Belokopytova, Polina S. ;
Nuriddinov, Miroslav A. ;
Mozheiko, Evgeniy A. ;
Fishman, Daniil ;
Fishman, Veniamin .
GENOME RESEARCH, 2020, 30 (01) :72-84
[8]   Multiscale 3D Genome Rewiring during Mouse Neural Development [J].
Bonev, Boyan ;
Cohen, Netta Mendelson ;
Szabo, Quentin ;
Fritsch, Lauriane ;
Papadopoulos, Giorgio L. ;
Lubling, Yaniv ;
Xu, Xiaole ;
Lv, Xiaodan ;
Hugnot, Jean-Philippe ;
Tanay, Amos ;
Cavalli, Giacomo .
CELL, 2017, 171 (03) :557-+
[9]  
Cao F., 2019, PREDICTING CHROMATIN, DOI [10.1101/720748, DOI 10.1101/720748]
[10]  
Chollet F., 2015, KERAS