On a Multi-Point Schwarz-Pick Lemma

被引:7
|
作者
Cho, Kyung Hyun [1 ]
Kim, Seong-A [2 ]
Sugawa, Toshiyuki [3 ]
机构
[1] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, Kyungbuk, South Korea
[2] Dongguk Univ, Dept Math Educ, Gyeongju 780714, Kyungbuk, South Korea
[3] Tohoku Univ, Grad Sch Informat Sci, Aoba Ku, Sendai, Miyagi 9808579, Japan
关键词
Schwarz-Pick Lemma; Schur algorithm; Nevanlinna-Pick interpolation; Peschl's invariant derivative; Dieudonne's Lemma; INEQUALITY;
D O I
10.1007/BF03321839
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the multi-point Schwarz-Pick Lemma and its associate functions due to Beardon-Minda and Baribeau-Rivard-Wegert. Basic properties of the associate functions are summarized. Then we observe that special cases of the multi-point Schwarz-Pick Lemma give the Schur's continued fraction algorithm and several inequalities for bounded analytic functions on the unit disk.
引用
收藏
页码:483 / 499
页数:17
相关论文
共 50 条
  • [1] On a Multi-Point Schwarz-Pick Lemma
    Kyung Hyun Cho
    Seong-A Kim
    Toshiyuki Sugawa
    Computational Methods and Function Theory, 2012, 12 : 483 - 499
  • [2] A multi-point Schwarz-Pick Lemma
    A. F. Beardon
    D. Minda
    Journal d’Analyse Mathématique, 2004, 92 : 81 - 104
  • [3] A multi-point Schwarz-Pick Lemma
    Beardon, AF
    Minda, D
    JOURNAL D ANALYSE MATHEMATIQUE, 2004, 92 (1): : 81 - 104
  • [4] The Schwarz-Pick Lemma for derivatives
    Beardon, AF
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (11) : 3255 - 3256
  • [5] Schwarz lemma and Schwarz-Pick lemma for solutions of the α-harmonic equation ☆
    Li, Ming
    Ma, Xiu-Shuang
    Wang, Li-Mei
    BULLETIN DES SCIENCES MATHEMATIQUES, 2025, 201
  • [6] Some generalizations for the Schwarz-Pick lemma and boundary Schwarz lemma
    Cai, Fangming
    Rui, Jie
    Zhong, Deguang
    AIMS MATHEMATICS, 2023, 8 (12): : 30992 - 31007
  • [7] SCHWARZ-PICK LEMMA FOR HARMONIC MAPS WHICH ARE CONFORMAL AT A POINT
    Forstneric, Franc
    Kalaj, David
    ANALYSIS & PDE, 2024, 17 (03):
  • [8] A Schwarz-Pick lemma for minimal maps
    Savas-Halilaj, Andreas
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 56 (02) : 193 - 201
  • [9] THE SCHWARZ-PICK LEMMA FOR CIRCLE PACKINGS
    BEARDON, AF
    STEPHENSON, K
    ILLINOIS JOURNAL OF MATHEMATICS, 1991, 35 (04) : 577 - 606
  • [10] Circuit Applications of Schwarz-Pick Lemma
    Duzenli, Timur
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (01) : 20 - 24