Fast Classification and Depth Estimation for Multispectral Single-Photon LiDAR Data

被引:1
|
作者
Belmekki, Mohamed Amir Alaa [1 ]
McLaughlin, Stephen [1 ]
Halimi, Abderrahim [1 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh, Scotland
基金
英国工程与自然科学研究理事会;
关键词
3D Multispectral imaging; Single-photon LiDAR; Bayesian estimation; Poisson statistics; Multispectral classification;
D O I
10.1109/SSPD51364.2021.9541510
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multispectral 3D LiDAR imaging plays an important role in the remote sensing community as it can provide rich spectral and depth information from targets. This paper proposes a fast pixel-wise classification algorithm for multispectral single-photon LiDAR imaging. The algorithm allows the detection of histograms containing surfaces with specific spectral signatures (i.e., specific materials) and discarding those histograms without reflective surfaces. The proposed Bayesian model is carefully built to allow the marginalization of latent variables leading to a tractable formulation and fast estimation of the parameters of interest, together with their uncertainties. Results on simulated and real single-photon data illustrates the robustness and good performance of this approach.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] On fast object detection using single-photon lidar data
    Tachella, Julian
    Altmann, Yoann
    McLaughlin, Stephen
    Tourneret, Jean-Yves
    WAVELETS AND SPARSITY XVIII, 2019, 11138
  • [2] Fast Task-Based Adaptive Sampling for 3D Single-Photon Multispectral Lidar Data
    Belmekki, Mohamed Amir Alaa
    Tobin, Rachael
    Buller, Gerald S.
    McLaughlin, Stephen
    Halimi, Abderrahim
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2022, 8 : 174 - 187
  • [3] Time-correlated multi-depth estimation of Single-photon lidar
    Wu M.
    Lu Y.
    Mao T.
    He W.
    Chen Q.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2022, 51 (02):
  • [4] Joint surface detection and depth estimation from single-photon Lidar data using ensemble estimators
    Drummond, K.
    McLaughlin, S.
    Altmann, Y.
    Pawlikowska, A.
    Lamb, R.
    2021 SENSOR SIGNAL PROCESSING FOR DEFENCE CONFERENCE (SSPD), 2021, : 16 - 20
  • [5] Efficient joint surface detection and depth estimation of single-photon Lidar data using assumed density filtering
    Drummond, K.
    Yao, D.
    Pawlikowska, A.
    Lamb, R.
    McLaughlin, S.
    Altmann, Y.
    2022 SENSOR SIGNAL PROCESSING FOR DEFENCE CONFERENCE, SSPD, 2022, : 6 - 10
  • [6] FAST SURFACE DETECTION IN SINGLE-PHOTON LIDAR WAVEFORMS
    Tachella, J.
    Altmann, Y.
    McLaughlin, S.
    Tourneret, J-Y
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [7] Bayesian Restoration of Reflectivity and Range Profiles from Subsampled Single-Photon Multispectral Lidar Data
    Altmann, Y.
    Tobin, R.
    Maccarone, A.
    Ren, X.
    McCarthy, A.
    Buller, G. S.
    McLaughlin, S.
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 1410 - 1414
  • [8] RESTORATION OF SPARSE MULTISPECTRAL SINGLE PHOTON LIDAR DATA
    Chen, Songmao
    Hao, Wei
    Su, Xiuqin
    Zhang, Zhenyang
    Wang, Shuchao
    Zhu, Wenhua
    2020 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (IEEE ICSPCC 2020), 2020,
  • [9] Dithered Depth Imaging for Single-Photon Lidar at Kilometer Distances
    Chang, Jiying
    Li, Jining
    Chen, Kai
    Liu, Shuai
    Wang, Yuye
    Zhong, Kai
    Xu, Degang
    Yao, Jianquan
    REMOTE SENSING, 2022, 14 (21)
  • [10] Fast Long-Range Photon Counting Depth Imaging With Sparse Single-Photon Data
    Kang, Yan
    Li, Lifei
    Liu, Dawei
    Li, Dongjian
    Zhang, Tongyi
    Zhao, Wei
    IEEE PHOTONICS JOURNAL, 2018, 10 (03):