On the Problem of Superconvergence of Finite Element Method Algorithms

被引:0
|
作者
Panin, A. A. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119992, Russia
关键词
superconvergence; finite element method; generalized finite element method; Galerkin method; boundary value problem for a second-order ordinary differential equation;
D O I
10.1134/S0965542508120105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The coincidence of an approximate solution to the boundary value problem for an ordinary differential equation with the exact solution at mesh nodes is proved for a certain class of the generalized finite element methods.
引用
收藏
页码:2211 / 2216
页数:6
相关论文
共 50 条
  • [1] On the problem of superconvergence of finite element method algorithms
    A. A. Panin
    Computational Mathematics and Mathematical Physics, 2008, 48 : 2211 - 2216
  • [2] Superconvergence of finite element method for the Signorini problem
    Li, Ming-xia
    Lin, Qun
    Zhang, Shu-hua
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 222 (02) : 284 - 292
  • [3] Superconvergence of the finite element method for the Stokes eigenvalue problem
    Sheng, Ying
    Zhang, Tie
    Pan, Zixing
    CHAOS SOLITONS & FRACTALS, 2021, 144
  • [4] The Local Superconvergence of the Linear Finite Element Method for the Poisson Problem
    He, Wen-ming
    Cui, Jun-Zhi
    Zhu, Qi-ding
    Wen, Zhong-liang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (03) : 930 - 946
  • [5] Superconvergence of finite volume element method for a nonlinear elliptic problem
    Bi, Chunjia
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (01) : 220 - 233
  • [6] Superconvergence analysis of finite element method for nonlinear semiconductor device problem
    Shi, Dongyang
    Jian, Peng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 138 : 1 - 22
  • [7] Superconvergence of Mixed Finite Element Method with Bernstein Polynomials for Stokes Problem
    Sun, Lanyin
    Wen, Siya
    Dong, Ziwei
    AXIOMS, 2025, 14 (03)
  • [8] Superconvergence in the generalized finite element method
    Ivo Babuška
    Uday Banerjee
    John E. Osborn
    Numerische Mathematik, 2007, 107 : 353 - 395
  • [9] Superconvergence in the generalized finite element method
    Babuska, Ivo
    Banerjee, Uday
    Osborn, John E.
    NUMERISCHE MATHEMATIK, 2007, 107 (03) : 353 - 395
  • [10] Superconvergence analysis of finite element method for time-fractional Thermistor problem
    Shi, Dongyang
    Yang, Huaijun
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 323 : 31 - 42