Porous NiO/graphene composite thin films as high performance anodes for lithium-ion batteries

被引:16
|
作者
Chen, Chunhui [1 ]
Perdomo, Pedro J. [2 ]
Fernandez, Melisa [3 ]
Barbeito, Andres [4 ]
Wang, Chunlei [1 ]
机构
[1] Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33174 USA
[2] Miami Dade Cty Publ Sch, Lamar Louise Curry Middle Sch, Miami, FL 33185 USA
[3] Miami Dade Cty Publ Sch, MAST Acad, Miami, FL 33149 USA
[4] Univ Florida, Dept Mech Engn, Gainesville, FL 32612 USA
基金
美国国家科学基金会;
关键词
Nickel oxide; Graphene; Electrostatic spray deposition; Conversion reaction; Lithium ion battery; ENHANCED ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS; GRAPHENE; CAPACITY; HYBRID; NANOSHEETS; STORAGE; ORIGIN;
D O I
10.1016/j.est.2016.08.008
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Porous NiO and NiO/graphene (NiOG) thin film electrodes were prepared by electrostatic spray deposition (ESD) technique and investigated as anodes for lithium ion batteries. The porous NiO structure was designed to better buffer the mechanical stress induced by the volume change of NiO as well as inhibit the aggregation of nanoparticles during conversion reaction. Aiming to facilitate better reaction kinetics compared to pure NiO electrode, graphene nanoplates were added to form NiOG composite film where additional graphene could be helpful for the electron transfer as conductive medium. As a result, porous NiOG composite thin film electrode exhibits high rate capability (759, 774, 614, 447, 243 and 104 mAh g (1) at 0.1, 0.2, 0.5,1, 2, and 5 A g (1), respectively) and excellent cycling performance (no capacity decrease for 500 cycles at 0.5 A g (1)). From analyzing cyclic voltammetry (CV) curves, rate and cyclical performance, and electrochemical impedance spectroscopy (EIS), it was concluded that NiOG composite electrodes exhibited enhanced electrochemical performance compared to NiO electrodes. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:198 / 204
页数:7
相关论文
共 50 条
  • [1] Preparation of ZnO Nanorods/Graphene Composite Anodes for High-Performance Lithium-Ion Batteries
    Zhang, Junfan
    Tan, Taizhe
    Zhao, Yan
    Liu, Ning
    NANOMATERIALS, 2018, 8 (12):
  • [2] Porous CuO nanotubes/graphene with sandwich architecture as high-performance anodes for lithium-ion batteries
    Xiao, Shuning
    Pan, Donglai
    Wang, Liangjun
    Zhang, Zhengzhong
    Lyu, Zhiyang
    Dong, Wenhao
    Chen, Xiaolang
    Zhang, Dieqing
    Chen, Wei
    Li, Hexing
    NANOSCALE, 2016, 8 (46) : 19343 - 19351
  • [3] Composite films as high performance anode materials in thin film lithium-ion batteries
    Lin, Jie
    Guo, Jianlai
    Liu, Chang
    Guo, Hang
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (15) : 7759 - 7766
  • [4] Solvated Graphene Frameworks as High-Performance Anodes for Lithium-Ion Batteries
    Xu, Yuxi
    Lin, Zhaoyang
    Zhong, Xing
    Papandrea, Ben
    Huang, Yu
    Duan, Xiangfeng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (18) : 5345 - 5350
  • [5] Silicon Thin Films as Anodes for High-Performance Lithium-Ion Batteries with Effective Stress Relaxation
    Yu, Cunjiang
    Li, Xin
    Ma, Teng
    Rong, Jiepeng
    Zhang, Rongjun
    Shaffer, Joseph
    An, Yonghao
    Liu, Qiang
    Wei, Bingqing
    Jiang, Hanqing
    ADVANCED ENERGY MATERIALS, 2012, 2 (01) : 68 - 73
  • [6] Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium-Ion and Lithium-Ion Batteries
    Xu, Yunhua
    Zhu, Yujie
    Liu, Yihang
    Wang, Chunsheng
    ADVANCED ENERGY MATERIALS, 2013, 3 (01) : 128 - 133
  • [7] A Hierarchically Nanostructured Composite of MoO3-NiO/Graphene for High-Performance Lithium-Ion Batteries
    Teng, Yongqiang
    Liu, Hao
    Liu, Dandan
    Chen, Yongchong
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2021, 18 (03)
  • [8] Nanostructured CoO/NiO/CoNi anodes with tunable morphology for high performance lithium-ion batteries
    Liu, Huan
    Wang, Xinlu
    Xu, Hang
    Yu, Wensheng
    Dong, Xiangting
    Yang, Ying
    Zhang, Hongbo
    Wang, Jinxian
    DALTON TRANSACTIONS, 2017, 46 (33) : 11031 - 11036
  • [9] Uniformly loading NiO nanowalls on graphene and their extremely high capacity and cyclability as anodes of lithium-ion batteries
    Wang, Qi
    Zhang, Chun-Yang
    Shan, Wan-Fei
    Xing, Li-Li
    Xue, Xin-Yu
    MATERIALS LETTERS, 2014, 118 : 66 - 68
  • [10] Ternary Si-SiO-Al Composite Films as High-Performance Anodes for Lithium-Ion Batteries
    Cheng, Yan
    Wei, Kun
    Yu, Zhaozhe
    Fan, Dianyuan
    Yan, Dong Liang
    Pan, Zhiliang
    Tian, Bingbing
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (29) : 34447 - 34456