The perturbation of the Seiberg-Witten equations revisited

被引:0
|
作者
Furuta, Mikio [1 ]
Matsuo, Shinichiroh [2 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
[2] Osaka Univ, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
Seiberg-Witten equations; scalar curvature; self-dual Weyl curvature; KAHLER-METRICS; 4-MANIFOLDS; INVARIANTS;
D O I
10.2969/jmsj/06841655
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new class of perturbations of the Seiberg-Witten equations. Our perturbations offer flexibility in the way the Seiberg-Witten invariants are constructed and also shed a new light to LeBrun's curvature inequalities.
引用
收藏
页码:1655 / 1668
页数:14
相关论文
共 50 条
  • [1] Seiberg-Witten geometries revisited
    Yuji Tachikawa
    Seiji Terashima
    Journal of High Energy Physics, 2011
  • [2] Seiberg-Witten geometries revisited
    Tachikawa, Yuji
    Terashima, Seiji
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (09):
  • [3] On a system of Seiberg-Witten equations
    Massamba, F
    Thompson, G
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (04) : 643 - 665
  • [4] The Seiberg-Witten equations on Hermitian surfaces
    Lupascu, P
    MATHEMATISCHE NACHRICHTEN, 2002, 242 : 132 - 147
  • [5] Seiberg-Witten invariants and vortex equations
    Garcia-Prada, O
    SYMETRIES QUANTIQUES: LXIVTH SESSION OF THE LES HOUCHES SUMMER SCHOOL, 1998, : 885 - 934
  • [6] WDVV equations and Seiberg-Witten theory
    Mironov, A
    INTEGRABILITY: THE SEIBERG-WITTEN AND WHITHAM EQUATIONS, 2000, : 103 - 123
  • [7] Variational principle for the Seiberg-Witten equations
    Doria, CM
    Contributions to Nonlinear Analysis: A TRIBUTE TO D. G. DE FIGUEIREDO ON THE OCCASION OF HIS 70TH BIRTHDAY, 2006, 66 : 247 - 261
  • [8] SEIBERG-WITTEN EQUATIONS WITH NEGATIVE SING
    Degirmenci, Nedim
    Ozdemir, Nulifer
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2010, 3 (02): : 40 - 48
  • [9] The geometry and physics of the Seiberg-Witten equations
    Wu, SY
    GEOMETRIC ANALYSIS AND APPLICATIONS TO QUANTUM FIELD THEORY, 2002, 205 : 157 - 203
  • [10] Witten triples and the Seiberg-Witten equations on a complex surface
    Dürr, M
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (1-2) : 53 - 76