TRPM7 promotes the epithelial-mesenchymal transition in ovarian cancer through the calcium-related PI3K / AKT oncogenic signaling

被引:112
|
作者
Liu, Lu [1 ,2 ,3 ]
Wu, Nayiyuan [1 ,2 ]
Wang, Ying [1 ,2 ]
Zhang, Xiaoyun [1 ,2 ]
Xia, Bing [1 ,2 ]
Tang, Jie [1 ,2 ]
Cai, Jingting [1 ,2 ]
Zhao, Zitong [1 ,2 ]
Liao, Qianjin [1 ,2 ]
Wang, Jing [1 ,2 ]
机构
[1] Cent South Univ, Hunan Canc Hosp, Hunan Clin Res Ctr Gynecol Canc, 283 Tongzipo Rd, Changsha 410013, Hunan, Peoples R China
[2] Cent South Univ, Affiliated Canc Hosp, Xiangya Sch Med, 283 Tongzipo Rd, Changsha 410013, Hunan, Peoples R China
[3] Univ South China, Hengyang 421001, Peoples R China
关键词
TRPM7; EMT; Metastasis; PI3k; AKT; Calcium; Ovarian cancer; POTENTIAL CHANNEL BLOCKERS; CELL-MIGRATION; CA2+ INFLUX; EMT; INVASION; ACTIN; INFLAMMATION; INVOLVEMENT; HOMEOSTASIS; CARCINOMA;
D O I
10.1186/s13046-019-1061-y
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundThe epithelial-mesenchymal transition (EMT) is crucial for metastasis and positively regulated by calcium-related signaling. The melastatin-related transient receptor potential 7 (TRPM7) regulates a non-selective cation channel and promotes cancer metastasis. However, the mechanisms underlying the action of TRPM7 in ovarian cancer are unclear.MethodsThe expression of TRPM7 and EMT markers (Vimentin, N-cadherin, Twist and E-cadherin) in ovarian cancer samples was detected. TRPM7was knockdown by shRNA in Ovarian cancer cell lines to examine calcium [Ca2+]i, EMT markers and PI3K/AKT markers. Various cellular assays, such as invasion and migration, were performed in vitro, and further confirmed in vivo.ResultsTRPM7 expression is negatively correlated with E-cadherin, but positively with N-cadherin, Vimentin and Twist expression in ovarian cancer samples. TRPM7 depletion inhibited the migration and invasion in SKOV3 and OVCAR3 cells. In addition, TRPM7 silencing decreased the lung metastasis of SKOV3 tumors and prolonged the survival of tumor-bearing mice. Similar to that of TRPM7 silencing, treatment with MK886, a potent 5-lipoxygenase inhibitor to reduce TRPM7 expression, and/or BAPTA-AM, an intracellular calcium chelator, significantly mitigated the Epidermal growth factor (EGF) or Insulin-like growth factors (IGF)-stimulated migration, invasion, and the EMT in ovarian cancer cells by decreasing the levels of intracellular calcium [Ca2+]i. Furthermore, treatment with LY2904002, a PI3K inhibitor, also inhibited the migration, invasion, and treatment with both LY2904002 and BAPTA-AM further enhanced their inhibition in ovarian cancer cells. Moreover, treatment with BAPTA-AM mitigated the IGF-stimulated migration, invasion, particularly in TRPM7-silenced ovarian cancer cells. Finally, TRPM7 silencing attenuated the PI3K/AKT activation, which was enhanced by BAPTA-AM, MK886 or LY2904002 treatment in ovarian cancer cells.ConclusionsTRPM7 silencing inhibited the EMT and metastasis of ovarian cancer by attenuating the calcium-related PI3k/AKT activation. Our findings suggest that TRPM7 may be a therapeutic target for intervention of ovarian cancer.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] TRPM7 promotes the epithelial–mesenchymal transition in ovarian cancer through the calcium-related PI3K / AKT oncogenic signaling
    Lu Liu
    Nayiyuan Wu
    Ying Wang
    Xiaoyun Zhang
    Bing Xia
    Jie Tang
    Jingting Cai
    Zitong Zhao
    Qianjin Liao
    Jing Wang
    Journal of Experimental & Clinical Cancer Research, 38
  • [2] TRPM7 promotes the epithelial- mesenchymal transition in ovarian cancer through the calcium-related PI3K / AKT oncogenic signaling (vol 38, 106, 2019)
    Liu, Lu
    Wu, Nayiyuan
    Wang, Ying
    Zhang, Xiaoyun
    Xia, Bing
    Tang, Jie
    Cai, Jingting
    Zhao, Zitong
    Liao, Qianjin
    Wang, Jing
    JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2024, 43 (01)
  • [3] HPIP promotes epithelial-mesenchymal transition and cisplatin resistance in ovarian cancer cells through PI3K/AKT pathway activation
    Bugide, Suresh
    Gonugunta, Vijay Kumar
    Penugurti, Vasudevarao
    Malisetty, Vijaya Lakshmi
    Vadlamudi, Ratna K.
    Manavathi, Bramanandam
    CELLULAR ONCOLOGY, 2017, 40 (02) : 133 - 144
  • [4] HPIP promotes epithelial-mesenchymal transition and cisplatin resistance in ovarian cancer cells through PI3K/AKT pathway activation
    Suresh Bugide
    Vijay Kumar Gonugunta
    Vasudevarao Penugurti
    Vijaya Lakshmi Malisetty
    Ratna K. Vadlamudi
    Bramanandam Manavathi
    Cellular Oncology, 2017, 40 : 133 - 144
  • [5] MiR-19a promotes epithelial-mesenchymal transition through PI3K/AKT pathway in gastric cancer
    Wei-Dong Lu
    Yun Zuo
    Zhen Xu
    Min Zhang
    World Journal of Gastroenterology, 2015, (15) : 4564 - 4573
  • [6] MiR-19a promotes epithelial-mesenchymal transition through PI3K/AKT pathway in gastric cancer
    Lu, Wei-Dong
    Zuo, Yun
    Xu, Zhen
    Zhang, Min
    WORLD JOURNAL OF GASTROENTEROLOGY, 2015, 21 (15) : 4564 - 4573
  • [7] MiR-19a promotes epithelial-mesenchymal transition through PI3K/AKT pathway in gastric cancer
    Lu, Weidong
    Xu, Zhen
    Zhang, Min
    Zuo, Yun
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2014, 7 (10): : 7286 - 7296
  • [8] A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition
    Xu, Wenting
    Yang, Zhen
    Lu, Nonghua
    CELL ADHESION & MIGRATION, 2015, 9 (04) : 317 - 324
  • [9] TACC3 promotes epithelial-mesenchymal transition (EMT) through the activation of PI3K/Akt and ERK signaling pathways
    Ha, Geun-Hyoung
    Park, Jong-Sup
    Breuer, Eun-Kyoung Yim
    CANCER LETTERS, 2013, 332 (01) : 63 - 73
  • [10] MOR promotes epithelial-mesenchymal transition and proliferation via PI3K/AKT signaling pathway in human colorectal cancer
    Gao, Lingling
    Yang, Li
    He, Yiping
    Liu, Yi
    Xu, Pinbo
    Zhang, Jun
    Dai, Sailin
    Luo, Xing
    Sun, Zhirong
    ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2023, 55 (01): : 72 - 80