A Study of Coupling Parameter Estimation Implemented by 4D-Var and EnKF with a Simple Coupled System

被引:8
|
作者
Han, Guijun [1 ]
Wu, Xinrong [1 ]
Zhang, Shaoqing [2 ]
Liu, Zhengyu [3 ,4 ,5 ]
Navon, Ionel Michael [6 ]
Li, Wei [1 ]
机构
[1] State Ocean Adm, Natl Marine Data & Informat Serv, Key Lab Marine Environm Informat Technol, Tianjin 300171, Peoples R China
[2] Princeton Univ, NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA
[3] Univ Wisconsin, Ctr Climate Res, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI 53706 USA
[5] Peking Univ, Lab Ocean Atmosphere Studies, Beijing 100871, Peoples R China
[6] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
ENSEMBLE KALMAN FILTER; ADAPTIVE COVARIANCE INFLATION; VARIATIONAL DATA ASSIMILATION; SEQUENTIAL DATA ASSIMILATION; MEMORY BUNDLE METHOD; OPERATIONAL IMPLEMENTATION; CLIMATE ESTIMATION; ADJUSTMENT; ATMOSPHERE; IMPACT;
D O I
10.1155/2015/530764
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Coupling parameter estimation (CPE) that uses observations to estimate the parameters in a coupled model through error covariance between variables residing in different media may increase the consistency of estimated parameters in an air-sea coupled system. However, it is very challenging to accurately evaluate the error covariance between such variables due to the different characteristic time scales at which flows vary in different media. With a simple Lorenz-atmosphere and slab ocean coupled system that characterizes the interaction of two-timescale media in a coupled "climate" system, this study explores feasibility of the CPE with four-dimensional variational analysis and ensemble Kalman filter within a perfect observing system simulation experiment framework. It is found that both algorithms can improve the representation of air-sea coupling processes through CPE compared to state estimation only. These simple model studies provide some insights when parameter estimation is implemented with a coupled general circulation model for improving climate estimation and prediction initialization.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Discussion on '4D-Var or EnKF?'
    Gustafsson, Nils
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2007, 59 (05) : 774 - 777
  • [2] Model-error estimation in 4D-Var
    Tremolet, Yannick
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2007, 133 (626) : 1267 - 1280
  • [3] EnKF and 4D-Var data assimilation with chemical transport model BASCOE (version 05.06)
    Skachko, Sergey
    Menard, Richard
    Errera, Quentin
    Christophe, Yves
    Chabrillat, Simon
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (08) : 2893 - 2908
  • [4] Incremental 4D-Var convergence study
    Tremolet, Yannick
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2007, 59 (05) : 706 - 718
  • [5] 4D-Var data assimilation system for a coupled physical-biological model
    Lellouche J.M.
    Ouberdous M.
    Eifler W.
    Journal of Earth System Science, 2000, 109 (4) : 491 - 502
  • [6] 4D-Var data assimilation system for a coupled physical-biological model
    Lellouche, JM
    Ouberdous, M
    Eifler, W
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-EARTH AND PLANETARY SCIENCES, 2000, 109 (04): : 491 - 502
  • [7] Parameter-field estimation for atmospheric dispersion: application to the Chernobyl accident using 4D-Var
    Bocquet, M.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2012, 138 (664) : 664 - 681
  • [8] An Idealized Study of Coupled Atmosphere-Ocean 4D-Var in the Presence of Model Error
    Fowler, Alison M.
    Lawless, Amos S.
    MONTHLY WEATHER REVIEW, 2016, 144 (10) : 4007 - 4030
  • [9] Improving computational efficiency of 4D-VAR system for global ocean circulation study
    Sugiura, N
    Awaji, T
    Baba, K
    Masuda, S
    Jiang, Q
    Shen, YY
    Annan, JD
    Kitawaki, S
    PARALLEL COMPUTATIONAL FLUID DYNAMICS: NEW FRONTIERS AND MULTI-DISCIPLINARY APPLICATIONS, PROCEEDINGS, 2003, : 87 - 92
  • [10] Towards an adjoint based 4D-Var state estimation for turbulent flow
    Bauweraerts, Pieter
    Meyers, Johan
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2018), 2018, 1037