Demonstration of Spike Timing Dependent Plasticity in CBRAM Devices with Silicon Neurons

被引:0
|
作者
Mahalanabis, D. [1 ]
Sivaraj, M. [1 ]
Chen, W. [1 ]
Shah, S. [1 ]
Barnaby, H. J. [1 ]
Kozicki, M. N. [1 ]
Christen, J. Blain [1 ]
Vrudhula, S. [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
关键词
CBRAM; neuromorphic; resistive memory; STDP; PROGRAMMABLE METALLIZATION CELLS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Spike timing dependent plasticity (STDP) is an important neural process that enables biological neural networks to learn by strengthening or weakening synaptic connections between neurons. This work presents simulation results and post-silicon experimental data that demonstrate for the first time the possibility of tuning the on state resistance of a type of emerging resistive memory device known as conductive bridge random access memory (CBRAM) in accordance with the biological STDP rule for neuromorphic applications. STDP behavior is demonstrated for CBRAM devices integrated with CMOS spiking neuron circuitry through back end of line post-processing for different initial resistance values and spike durations.
引用
收藏
页码:2314 / 2317
页数:4
相关论文
共 50 条
  • [1] Spike-Timing Dependent Plasticity in Unipolar Silicon Oxide RRAM Devices
    Zarudnyi, Konstantin
    Mehonic, Adnan
    Montesi, Luca
    Buckwell, Mark
    Hudziak, Stephen
    Kenyon, Anthony J.
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [2] Spike-timing-dependent plasticity for neurons with recurrent connections
    Burkitt, A. N.
    Gilson, M.
    van Hemmen, J. L.
    BIOLOGICAL CYBERNETICS, 2007, 96 (05) : 533 - 546
  • [3] Spike-timing-dependent plasticity for neurons with recurrent connections
    A. N. Burkitt
    M. Gilson
    J. L. van Hemmen
    Biological Cybernetics, 2007, 96 : 533 - 546
  • [4] Spike timing dependent plasticity and mutual information in spiking neurons
    Chechik, G
    NEUROCOMPUTING, 2001, 38 : 147 - 152
  • [5] CMOL implementation of spiking neurons and spike-timing dependent plasticity
    Afifi, Ahmad
    Ayatollahi, Ahmad
    Raissi, Farshid
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2011, 39 (04) : 357 - 372
  • [6] Neuromorphic Spike Timing Dependent Plasticity with adaptive OZ Spiking Neurons
    Hazan, Avi
    Tsur, Elishai Ezra
    2021 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (IEEE BIOCAS 2021), 2021,
  • [7] Experimental demonstration of photonic spike-timing-dependent plasticity based on a VCSOA
    Ziwei SONG
    Shuiying XIANG
    Xingyu CAO
    Shihao ZHAO
    Yue HAO
    Science China(Information Sciences), 2022, 65 (08) : 228 - 237
  • [8] Experimental demonstration of photonic spike-timing-dependent plasticity based on a VCSOA
    Ziwei Song
    Shuiying Xiang
    Xingyu Cao
    Shihao Zhao
    Yue Hao
    Science China Information Sciences, 2022, 65
  • [9] Experimental demonstration of photonic spike-timing-dependent plasticity based on a VCSOA
    Song, Ziwei
    Xiang, Shuiying
    Cao, Xingyu
    Zhao, Shihao
    Hao, Yue
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (08)
  • [10] The effect of spike redistribution in a reciprocally connected pair of neurons with spike timing-dependent plasticity
    Hernández, G
    Rubin, J
    Munro, P
    NEUROCOMPUTING, 2003, 52-4 : 347 - 353