Genetic algorithms, floating point numbers and applications

被引:3
|
作者
Hardy, Y
Steeb, WH
机构
[1] Univ Johannesburg, Int Sch Sci Comp, ZA-2006 Auckland Pk, South Africa
[2] Univ Zurich, ETH, Inst Neuroinformat, CH-8057 Zurich, Switzerland
来源
关键词
genetic algorithms; crossing; mutation; floating point numbers;
D O I
10.1142/S0129183105008321
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The core in most genetic algorithms is the bitwise manipulations of bit strings. We show that one can directly manipulate the bits in floating point numbers. This means the main bitwise operations in genetic algorithm mutations and crossings are directly done inside the floating point number. Thus the interval under consideration does not need to be known in advance. For applications, we consider the roots of polynomials and finding solutions of linear equations.
引用
收藏
页码:1811 / 1816
页数:6
相关论文
共 50 条