Matrix permeability of reservoir rocks, Ngatamariki geothermal field, Taupo Volcanic Zone, New Zealand

被引:38
|
作者
Cant, J. L. [1 ]
Siratovich, P. A. [1 ]
Cole, J. W. [1 ]
Villeneuve, M. C. [1 ]
Kennedy, B. M. [1 ]
机构
[1] Univ Canterbury, Dept Geol Sci, Private Bag 4800, Christchurch 8140, New Zealand
来源
GEOTHERMAL ENERGY | 2018年 / 6卷 / 01期
关键词
Pores; Volcaniclastic; Confining pressure; Microfractures; Connected porosity; EDIFICE-FORMING ANDESITES; MECHANICAL-BEHAVIOR; INFERRED PERMEABILITY; MT; ETNA; POROSITY; EVOLUTION; MAGMA; VELOCITIES; FRACTURES; FAILURE;
D O I
10.1186/s40517-017-0088-6
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The Taupo Volcanic Zone (TVZ) hosts 23 geothermal fields, seven of which are currently utilised for power generation. Ngatamariki geothermal field (NGF) is one of the latest geothermal power generation developments in New Zealand (commissioned in 2013), located approximately 15 km north of Taupo. Samples of reservoir rocks were taken from the Tahorakuri Formation and Ngatamariki Intrusive Complex, from five wells at the NGF at depths ranging from 1354 to 3284 m. The samples were categorised according to whether their microstructure was pore or microfracture dominated. Image analysis of thin sections impregnated with an epoxy fluorescent dye was used to characterise and quantify the porosity structures and their physical properties were measured in the laboratory. Our results show that the physical properties of the samples correspond to the relative dominance of microfractures compared to pores. Microfracture-dominated samples have low connected porosity and permeability, and the permeability decreases sharply in response to increasing confining pressure. The pore-dominated samples have high connected porosity and permeability, and lower permeability decrease in response to increasing confining pressure. Samples with both microfractures and pores have a wide range of porosity and relatively high permeability that is moderately sensitive to confining pressure. A general trend of decreasing connected porosity and permeability associated with increasing dry bulk density and sonic velocity occurs with depth; however, variations in these parameters are more closely related to changes in lithology and processes such as dissolution and secondary veining and re-crystallisation. This study provides the first broad matrix permeability characterisation of rocks from depth at Ngatamariki, providing inputs for modelling of the geothermal system. We conclude that the complex response of permeability to confining pressure is in part due to the intricate dissolution, veining, and recrystallization textures of many of these rocks that lead to a wide variety of pore shapes and sizes. While the laboratory results are relevant only to similar rocks in the Taupo Volcanic Zone, the relationships they highlight are applicable to other geothermal fields, as well as rock mechanic applications to, for example, aspects of volcanology, landslide stabilisation, mining, and tunnelling at depth.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Matrix permeability of reservoir rocks, Ngatamariki geothermal field, Taupo Volcanic Zone, New Zealand
    J. L. Cant
    P. A. Siratovich
    J. W. Cole
    M. C. Villeneuve
    B. M. Kennedy
    Geothermal Energy, 6
  • [2] Ngatamariki Geothermal System: Magmatic to Epithermal Transition in the Taupo Volcanic Zone, New Zealand
    Chambefort, I.
    Lewis, B.
    Simpson, M. P.
    Bignall, G.
    Rae, A. J.
    Ganefianto, N.
    ECONOMIC GEOLOGY, 2017, 112 (02) : 319 - 346
  • [3] SUBSURFACE ANDESITE LAVAS AND PLUTONIC ROCKS IN THE ROTOKAWA AND NGATAMARIKI GEOTHERMAL SYSTEMS, TAUPO VOLCANIC ZONE, NEW-ZEALAND
    BROWNE, PRL
    GRAHAM, IJ
    PARKER, RJ
    WOOD, CP
    JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 1992, 51 (03) : 199 - 215
  • [4] Shear wave velocity changes induced by earthquakes and rainfall at the Rotokawa and Ngatamariki geothermal fields, Taupo Volcanic Zone, New Zealand
    Civilini, F.
    Savage, M. K.
    Townend, J.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 221 (01) : 97 - 114
  • [5] The spatial distribution of the geothermal fields in the Taupo Volcanic Zone, New Zealand
    Kissling, WM
    Weir, GJ
    JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2005, 145 (1-2) : 136 - 150
  • [6] U-Pb dating of zircon in hydrothermally altered rocks of the Kawerau Geothermal Field, Taupo Volcanic Zone, New Zealand
    Milicich, S. D.
    Wilson, C. J. N.
    Bignall, G.
    Pezaro, B.
    Charlier, B. L. A.
    Wooden, J. L.
    Ireland, T. R.
    JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2013, 253 : 97 - 113
  • [7] Surface heat loss assessment at the Waiotapu Geothermal Field, Taupo Volcanic Zone, New Zealand
    Seward, Anya M.
    Reeves, Robert R.
    Mroczek, Ed
    Macdonald, Nick
    Brakenrig, Thomas
    GEOTHERMICS, 2025, 126
  • [8] ORIGIN OF THE RHYOLITIC ROCKS OF THE TAUPO VOLCANIC ZONE, NEW-ZEALAND
    REID, F
    JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 1983, 15 (04) : 315 - 338
  • [9] Physical property relationships of the Rotokawa Andesite, a significant geothermal reservoir rock in the Taupo Volcanic Zone, New Zealand
    Siratovich P.A.
    Heap M.J.
    Villenueve M.C.
    Cole J.W.
    Reuschlé T.
    Siratovich, Paul A (paul.siratovich@gmail.com), 1600, SpringerOpen (02)
  • [10] Helium isotope studies of geothermal fields in the Taupo Volcanic Zone, New Zealand
    Hulston, JR
    Lupton, JE
    JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 1996, 74 (3-4) : 297 - 321