OOD-CV: A Benchmark for Robustness to Out-of-Distribution Shifts of Individual Nuisances in Natural Images

被引:10
|
作者
Zhao, Bingchen [1 ]
Yu, Shaozuo [2 ]
Ma, Wufei [3 ]
Yu, Mingxin [4 ]
Mei, Shenxiao [3 ]
Wang, Angtian [3 ]
He, Ju [3 ]
Yuille, Alan [3 ]
Kortylewski, Adam [3 ,5 ,6 ]
机构
[1] Univ Edinburgh, Edinburgh, Midlothian, Scotland
[2] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[3] Johns Hopkins Univ, Baltimore, MD 21218 USA
[4] Peking Univ, Beijing, Peoples R China
[5] Max Planck Instutite Informat, Saarbrucken, Germany
[6] Univ Freiburg, Freiburg, Germany
来源
关键词
D O I
10.1007/978-3-031-20074-8_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Enhancing the robustness of vision algorithms in real-world scenarios is challenging. One reason is that existing robustness benchmarks are limited, as they either rely on synthetic data or ignore the effects of individual nuisance factors. We introduce OOD-CV , a benchmark dataset that includes out-of-distribution examples of 10 object categories in terms of pose, shape, texture, context and the weather conditions, and enables benchmarking models for image classification, object detection, and 3D pose estimation. In addition to this novel dataset, we contribute extensive experiments using popular baseline methods, which reveal that: 1) Some nuisance factors have a much stronger negative effect on the performance compared to others, also depending on the vision task. 2) Current approaches to enhance robustness have only marginal effects, and can even reduce robustness. 3) We do not observe significant differences between convolutional and transformer architectures. We believe our dataset provides a rich testbed to study robustness and will help push forward research in this area.
引用
收藏
页码:163 / 180
页数:18
相关论文
共 5 条
  • [1] OOD-CV-v2: An Extended Benchmark for Robustness to Out-of-Distribution Shifts of Individual Nuisances in Natural Images
    Zhao, Bingchen
    Wang, Jiahao
    Ma, Wufei
    Jesslen, Artur
    Yang, Siwei
    Yu, Shaozuo
    Zendel, Oliver
    Theobalt, Christian
    Yuille, Alan L.
    Kortylewski, Adam
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 11104 - 11118
  • [2] Structure-based out-of-distribution (OOD) materials property prediction: a benchmark study
    Omee, Sadman Sadeed
    Fu, Nihang
    Dong, Rongzhi
    Hu, Ming
    Hu, Jianjun
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [3] Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis, and LLMs Evaluations
    Yuan, Lifan
    Chen, Yangyi
    Cui, Ganqu
    Gao, Hongcheng
    Zou, Fangyuan
    Cheng, Xingyi
    Ji, Heng
    Liu, Zhiyuan
    Sun, Maosong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [4] MIM-OOD: Generative Masked Image Modelling for Out-of-Distribution Detection in Medical Images
    Marimont, Sergio Naval
    Siomos, Vasilis
    Tarroni, Giacomo
    DEEP GENERATIVE MODELS, DGM4MICCAI 2023, 2024, 14533 : 35 - 44
  • [5] MOOD 2020: A Public Benchmark for Out-of-Distribution Detection and Localization on Medical Images
    Zimmerer, David
    Full, Peter M.
    Isensee, Fabian
    Jaeger, Paul
    Adler, Tim
    Petersen, Jens
    Koehler, Gregor
    Ross, Tobias
    Reinke, Annika
    Kascenas, Antanas
    Jensen, Bjorn Sand
    O'Neil, Alison Q.
    Tan, Jeremy
    Hou, Benjamin
    Batten, James
    Qiu, Huaqi
    Kainz, Bernhard
    Shvetsova, Nina
    Fedulova, Irina
    Dylov, Dmitry, V
    Yu, Baolun
    Zhai, Jianyang
    Hu, Jingtao
    Si, Runxuan
    Zhou, Sihang
    Wang, Siqi
    Li, Xinyang
    Chen, Xuerun
    Zhao, Yang
    Marimont, Sergio Naval
    Tarroni, Giacomo
    Saase, Victor
    Maier-Hein, Lena
    Maier-Hein, Klaus
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (10) : 2728 - 2738