Intersection removal for simple polygons

被引:0
|
作者
Lahorani, S
Krithivasan, K
机构
[1] Dept. of Comp. Sci. and Engineering, Indian Institute of Technology
关键词
computational geometry; simple polygons; intensity of collision;
D O I
10.1080/00207169708804585
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given two intersecting simple polygons A and B and a direction, theta, we have to find the minimum distance by which B should be translated along direction theta so that A and B no longer intersect. We present two algorithms for this problem for the case that A and B are in 2 dimensions and one algorithm for the case that they are in 3 dimensions. The 2 dimensional algorithms run in O(N-4) and O(N-3 log N) time respectively where N is the total number of vertices in both the polygons while the 3 dimensional algorithm runs in O(N-4) time.
引用
收藏
页码:211 / 223
页数:13
相关论文
共 50 条
  • [2] THE INTERSECTION OF A NESTED SEQUENCE OF POLYGONS
    LOSSERS, OP
    VITALE, RA
    AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (06): : 370 - 371
  • [3] ON THE INTERSECTION OF 2 PLANAR POLYGONS
    ZUBIAGA, RB
    COMPUTERS & GRAPHICS, 1988, 12 (3-4) : 401 - 403
  • [4] On Intersection Graphs of Convex Polygons
    Brimkov, Valentin E.
    Kafer, Sean
    Szczepankiewicz, Matthew
    Terhaar, Joshua
    COMBINATORIAL IMAGE ANALYSIS, IWCIA 2014, 2014, 8466 : 25 - 36
  • [5] Intersection of maximal orthogonally starshaped polygons
    Topalǎ O.
    Journal of Geometry, 2001, 70 (1) : 164 - 167
  • [6] Two results on intersection graphs of polygons
    Kratochvíl, J
    Pergel, M
    GRAPH DRAWING, 2004, 2912 : 59 - 70
  • [7] Testing simple polygons
    Arkin, EM
    Belleville, P
    Mitchell, JSB
    Mount, D
    Romanik, K
    Salzberg, S
    Souvaine, D
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 8 (02): : 97 - 114
  • [8] Morphing simple polygons
    Guibas L.
    Hershberger J.
    Suri S.
    Discrete & Computational Geometry, 2000, 24 (1) : 1 - 34
  • [9] Morphing simple polygons
    Guibas, L
    Hershberger, J
    Suri, S
    DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 24 (01) : 1 - 34
  • [10] A decomposition for simple polygons
    Breen, M
    ARS COMBINATORIA, 2003, 68 : 33 - 38