Life-cycle assessment of the intensity of production on the greenhouse gas emissions and economics of grass-based suckler beef production systems

被引:11
|
作者
Clarke, A. M. [1 ]
Brennan, P. [2 ]
Crosson, P. [1 ]
机构
[1] TEAGASC, Anim & Grassland Res & Innovat Ctr, Dunsany, Meath, Ireland
[2] Bord Bia, Dublin 2, Ireland
来源
JOURNAL OF AGRICULTURAL SCIENCE | 2013年 / 151卷 / 05期
关键词
SPRING GRAZING DATE; WHOLE-FARM SYSTEMS; DRY-MATTER INTAKE; STOCKING RATE; MILK-PRODUCTION; DAIRY-COWS; CARCASS TRAITS; PROGENY; GROWTH; PERFORMANCE;
D O I
10.1017/S0021859613000312
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
In Ireland, the largest contributor of greenhouse gas (GHG) emissions is agriculture. The objective of the current study was to evaluate the impact of stocking intensities of beef cattle production systems on technical and economic performance and GHG emissions. A bioeconomic model of Irish suckler beef production systems was used to generate scenarios and to evaluate their technical and economic performance. To model the impact of each scenario onGHGemissions, the output of the bioeconomic model was used as an inventory analysis in a life-cycle assessment model and various GHG emission factors were integrated with the production profile. All the estimated GHG emissions were converted to their 100-year global warming potential carbon dioxide equivalent (CO(2)e). The scenarios modelled were bull/heifer and steer/heifer suckler beef production systems at varying stocking intensities. According to policy constraints, stocking intensities were based on the excretion of organic nitrogen (N), which varied depending on animal category. Stocking intensity was increased by increasing fertilizer N application rates. Carcass output and profitability increased with increasing stocking intensity. At a stocking intensity of 150 kg N/ha total emissions were lowest when expressed per kg of beef carcass (20.1 kg CO(2)e/kg beef) and per hectare (9.2 tCO(2)e/ha) in the bull/heifer system. Enteric fermentation was the greatest source of GHG emissions and ranged from 0.49 to 0.47 of total emissions with increasing stocking intensity for both production systems. The current study shows that increasing stocking intensity via increased fertilizer Napplication rates leads to increased profitability on beef farms with only modest increases in GHG emissions.
引用
收藏
页码:714 / 726
页数:13
相关论文
共 50 条
  • [1] Assessment of grazing management on farm greenhouse gas intensity of beef production systems in the Canadian Prairies using life cycle assessment
    Alemu, Aldilu W.
    Janzen, Henry
    Little, Shannan
    Hao, Xiying
    Thompson, Donald J.
    Baron, Vern
    Iwaasa, Alan
    Beauchemin, Karen A.
    Krobel, Roland
    AGRICULTURAL SYSTEMS, 2017, 158 : 1 - 13
  • [2] Greenhouse gas emissions from life cycle assessment of Norwegian food production systems
    Refsgaard, K.
    Bergsdal, H.
    Berglann, H.
    Pettersen, J.
    ACTA AGRICULTURAE SCANDINAVICA SECTION A-ANIMAL SCIENCE, 2012, 62 (04): : 336 - 346
  • [3] Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study
    Beauchemin, Karen A.
    Janzen, H. Henry
    Little, Shannan M.
    McAllister, Tim A.
    McGinn, Sean M.
    AGRICULTURAL SYSTEMS, 2010, 103 (06) : 371 - 379
  • [4] Variability in greenhouse gas emission intensity of semi-intensive suckler cow beef production systems
    Samsonstuen, Stine
    Aby, Bente A.
    Crosson, Paul
    Beauchemin, Karen A.
    Wetlesen, Marit S.
    Bonesmo, Helge
    Aass, Laila
    LIVESTOCK SCIENCE, 2020, 239
  • [5] Aggregation and Allocation of Greenhouse Gas Emissions in Oil and Gas Production: Implications for Life-Cycle Greenhouse Gas Burdens
    Chen, Qining
    Dunn, Jennifer B.
    Allen, David T.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (20): : 17065 - 17073
  • [6] Life-cycle assessment of greenhouse gas emissions from dairy production in Eastern Canada: A case study
    Mc Geough, E. J.
    Little, S. M.
    Janzen, H. H.
    McAllister, T. A.
    McGinn, S. M.
    Beauchemin, K. A.
    JOURNAL OF DAIRY SCIENCE, 2012, 95 (09) : 5164 - 5175
  • [7] Variability in greenhouse gas emissions, fossil energy consumption and farm economics in suckler beef production in 59 French farms
    Veysset, P.
    Lherm, M.
    Bebin, D.
    Roulenc, M.
    Benoit, M.
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2014, 188 : 180 - 191
  • [8] Whole-farm systems modelling of greenhouse gas emissions from pastoral suckler beef cow production systems
    Foley, P. A.
    Crosson, P.
    Lovett, D. K.
    Boland, T. M.
    O'Mara, F. P.
    Kenny, D. A.
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2011, 142 (3-4) : 222 - 230
  • [9] Beef production and greenhouse gas emissions
    Avery, Alex
    Avery, Deirmis
    ENVIRONMENTAL HEALTH PERSPECTIVES, 2008, 116 (09) : A374 - A375
  • [10] Assessment of Building Greenhouse Gas Emissions Based on Hybrid Life-cycle Model
    Zeng Deheng
    Ren Hong
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ELECTRONIC & MECHANICAL ENGINEERING AND INFORMATION TECHNOLOGY (EMEIT-2012), 2012, 23