High cycle fatigue and ratcheting interaction of laser powder bed fusion stainless steel 316L: Fracture behaviour and stress-based modelling

被引:58
|
作者
Zhang, Meng [1 ,2 ]
Su, Chen-Nan [3 ]
Zhang, Xiang [4 ]
Wei, Jun [3 ]
Hardacre, David [2 ]
Li, Hua [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore Ctr 3D Printing, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Lloyds Register Singapore Pte Ltd, 1 Fusionopolis Pl,09-11 Galaxis, Singapore 138522, Singapore
[3] ASTAR, Singapore Inst Mfg Technol, 73 Nanyang Dr, Singapore 637662, Singapore
[4] Coventry Univ, Fac Engn Environm & Comp, Coventry CV1 5FB, W Midlands, England
关键词
High cycle fatigue; Ratcheting; Stress-based model; Stainless steel 316L; Additive manufacturing; MEAN STRESS; MECHANICAL-PROPERTIES; RESIDUAL-STRESS; HEAT-TREATMENT; CRACK CLOSURE; MICROSTRUCTURE; STRAIN; LIFE; TRANSFORMATION; PERFORMANCE;
D O I
10.1016/j.ijfatigue.2018.12.016
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Variations in the physical and mechanical properties of parts made by laser power bed fusion (L-PBF) could be affected by the choice of processing or post-processing strategies. This work examined the influence of build orientation and post-processing treatments (annealing or hot isostatic pressing) on the fatigue and fracture behaviours of L-PBF stainless steel 316L in the high cycle fatigue region, i.e. 10(4)-10(6) cycles. Experimental results show that both factors introduce significant changes in the plastic deformation properties, which affect fatigue strength via the mechanism of fatigue-ratcheting interaction. Cyclic plasticity is characterised by hardening, which promotes mean stress insensitivity and improved fatigue resistance. Fatigue activities, involving the initiation of crack at defects and microstructural heterogeneities, are of greater relevance to the longer life region where the global deformation mode is elastic. As the simultaneous actions of ratcheting and fatigue generate complex nonlinear interactions between the alternating stress amplitude and mean stress, the fatigue properties could not be effectively predicted using traditional stress-based models. A modification to the Goodman relation was proposed to account for the added effects of cyclic plasticity and was demonstrated to produce good agreement with experimental results for both cyclic hardening and softening materials.
引用
收藏
页码:252 / 264
页数:13
相关论文
共 50 条
  • [1] Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L: Influence of processing parameters
    Zhang, Meng
    Sun, Chen-Nan
    Zhang, Xiang
    Goh, Phoi Chin
    Wei, Jun
    Hardacre, David
    Li, Hua
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 703 : 251 - 261
  • [2] Corrosion Fatigue Characteristics of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion
    Gnanasekaran, Balachander
    Song, Jie
    Vasudevan, Vijay
    Fu, Yao
    METALS, 2021, 11 (07)
  • [3] Predictive models for fatigue property of laser powder bed fusion stainless steel 316L
    Zhang, Meng
    Sun, Chen-Nan
    Zhang, Xiang
    Wei, Jun
    Hardacre, David
    Li, Hua
    MATERIALS & DESIGN, 2018, 145 : 42 - 54
  • [4] Fatigue behavior of stainless steel 316L microstruts fabricated by laser powder bed fusion
    Ghosh, Abhi
    Kumar, Amit
    Harris, Adrian
    Kietzig, Anne-Marie
    Brochu, Mathieu
    MATERIALIA, 2022, 26
  • [5] Microstructural characterization and mechanical behaviour of laser powder Bed Fusion stainless steel 316L
    Crisafulli, Davide
    Fintova, Stanislava
    Santonocito, Dario
    D'Andrea, Danilo
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2024, 131
  • [6] Effect of post-treatments on the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion
    Elangeswaran, Chola
    Cutolo, Antonio
    Muralidharan, Gokula Krishna
    de Formanoir, Charlotte
    Berto, Filippo
    Vanmeensel, Kim
    Van Hooreweder, Brecht
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 123 : 31 - 39
  • [7] The influence of energy density on the low cycle fatigue behaviour of laser powder bed fused stainless steel 316L
    Douglas, Rory
    Beard, William
    Barnard, Nicholas
    Lee, Seungjong
    Shao, Shuai
    Shamsaei, Nima
    Jones, Thomas
    Lancaster, Robert
    INTERNATIONAL JOURNAL OF FATIGUE, 2024, 181
  • [8] Effect of residual stress on fatigue strength of 316L stainless steel produced by laser powder bed fusion process
    Lai, Wei-Jen
    Ojha, Avinesh
    Li, Ziang
    Engler-Pinto, Carlos
    Su, Xuming
    PROGRESS IN ADDITIVE MANUFACTURING, 2021, 6 (03) : 375 - 383
  • [9] Effect of residual stress on fatigue strength of 316L stainless steel produced by laser powder bed fusion process
    Wei-Jen Lai
    Avinesh Ojha
    Ziang Li
    Carlos Engler-Pinto
    Xuming Su
    Progress in Additive Manufacturing, 2021, 6 : 375 - 383
  • [10] Hydrogen Trapping in Laser Powder Bed Fusion 316L Stainless Steel
    Metalnikov, Polina
    Ben-Hamu, Guy
    Eliezer, Dan
    METALS, 2022, 12 (10)