Explicit variable step-size and time-reversible integration

被引:29
|
作者
Holder, T
Leimkuhler, B [1 ]
Reich, S
机构
[1] Univ Leicester, Dept Math & Comp Sci, Leicester LE1 7RH, Leics, England
[2] Konrad Zuse Zentrum, D-14195 Berlin, Germany
[3] Univ Surrey, Dept Math & Stat, Guildford GU2 5XH, Surrey, England
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0168-9274(01)00089-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Huang and Leimkuhler [SIAM J. Sci. Comput. 18 (1997) 239-256], a variable step-size, semi-explicit variant of the explicit Stormer-Verlet method has been suggested for the time-reversible integration of Newton's equations of motion. Here we propose a fully explicit version of this approach applicable to explicit and symmetric integration methods for general time-reversible differential equations. This approach greatly simplifies the implementation of the method while providing a straightforward approach to higher-order reversible variable time-step integration. As applications, we discuss the variable step-size, time-reversible, and fully explicit integration of rigid body motion and the Kepler problem. (C) 2001 Published by Elsevier Science B.V. on behalf of IMACS.
引用
收藏
页码:367 / 377
页数:11
相关论文
共 50 条
  • [1] A Novel Variable Step-Size Algorithm for Implicit Integration
    Zou, Jianxiao
    Zhou, Cuiyun
    Zheng, Gang
    ADVANCES IN CIVIL ENGINEERING, PTS 1-6, 2011, 255-260 : 2159 - 2163
  • [2] The Selection of the Step-Size Factor in the Variable Step-Size CMA
    Liu, Jia
    Zhao, Baofeng
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT I, 2011, 7002 : 288 - +
  • [3] An Iteration-Based Variable Step-Size Algorithm for Joint Explicit Adaptation of Time Delay
    Wang, Leiou
    Wang, Donghui
    Zheng, Feiyang
    Hao, Chengpeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2017, 64 (08) : 992 - 996
  • [4] A variable step-size selection method for implicit integration schemes
    Holsapple, Raymond
    Iyer, Ram
    Doman, David
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 3013 - +
  • [5] VARIABLE ORDER AND VARIABLE STEP-SIZE INTEGRATION METHOD FOR TRANSIENT ANALYSIS PROGRAMS
    KATO, T
    IKEUCHI, K
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1991, 6 (01) : 206 - 213
  • [6] Variable order and variable step-size integration method for transient analysis programs
    Kato, Toshiji
    Ikeuchi, Kenji
    IEEE Transactions on Power Systems, 1991, 6 (02) : 206 - 213
  • [7] Explicit, time reversible, adaptive step size control
    Hairer, E
    Söderlind, G
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (06): : 1838 - 1851
  • [8] A CLASS OF DIFFERENTIAL-EQUATIONS FOR TESTING VARIABLE STEP-SIZE INTEGRATION
    WEBSTER, MB
    BAKER, PW
    INFORMATION PROCESSING LETTERS, 1986, 22 (02) : 103 - 107
  • [9] Variable step-size selection methods for implicit integration schemes for odes
    Holsapple, Raymond
    Iyer, Ram
    Doman, David
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2007, 4 (02) : 210 - 240
  • [10] Explicit time-reversible orbit integration in Particle In Cell codes with static homogeneous magnetic field
    Patacchini, L.
    Hutchinson, I. H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (07) : 2604 - 2615