3-choosability of planar graphs with (≤4)-cycles far apart

被引:7
|
作者
Dvorak, Zdenek [1 ]
机构
[1] Charles Univ Prague, Dept Appl Math, Fac Math & Phys, CR-11800 Prague, Czech Republic
关键词
Planar graphs; List coloring; LIST COLORINGS; GIRTH-5; MAP;
D O I
10.1016/j.jctb.2013.10.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is k-choosable if it can be colored whenever every vertex has a list of at least k available colors. We prove that if cycles of length at most four in a planar graph G are pairwise far apart, then G is 3-choosable. This is analogous to the problem of Havel regarding 3-colorability of planar graphs with triangles far apart. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:28 / 59
页数:32
相关论文
共 50 条
  • [1] On 3-choosability of planar graphs without certain cycles
    Zhang, Haihui
    Sun, Zhiren
    INFORMATION PROCESSING LETTERS, 2008, 107 (3-4) : 102 - 106
  • [2] A note on 3-choosability of planar graphs without certain cycles
    Zhang, L
    Wu, BD
    DISCRETE MATHEMATICS, 2005, 297 (1-3) : 206 - 209
  • [3] ACYCLIC 3-CHOOSABILITY OF PLANAR GRAPHS WITH NO CYCLES OF LENGTH FROM 4 TO 11
    Borodin, O., V
    Ivanova, A. O.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2010, 7 : 275 - 283
  • [4] A note on 3-choosability of planar graphs
    Wang, Yingqian
    Lu, Huajing
    Chen, Ming
    INFORMATION PROCESSING LETTERS, 2008, 105 (05) : 206 - 211
  • [5] 3-CHOOSABILITY OF TRIANGLE-FREE PLANAR GRAPHS WITH CONSTRAINTS ON 4-CYCLES
    Dvorak, Zdenek
    Lidicky, Bernard
    Skrekovski, Riste
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (03) : 934 - 945
  • [6] Acyclic 3-choosability of planar graphs without cycles of length from 4 to 12
    Borodin O.V.
    Journal of Applied and Industrial Mathematics, 2010, 4 (02) : 158 - 162
  • [7] Note on 3-choosability of planar graphs with maximum degree 4
    Dross, Francois
    Luzar, Borut
    Macekova, Maria
    Sotak, Roman
    DISCRETE MATHEMATICS, 2019, 342 (11) : 3123 - 3129
  • [8] 4-choosability of planar graphs with 4-cycles far apart via the Combinatorial Nullstellensatz
    Yang, Fan
    Wang, Yue
    Wu, Jian-Liang
    DISCRETE MATHEMATICS, 2023, 346 (04)
  • [9] A note on the not 3-choosability of some families of planar graphs
    Montassier, M
    INFORMATION PROCESSING LETTERS, 2006, 99 (02) : 68 - 71
  • [10] A note on the acyclic 3-choosability of some planar graphs
    Hocquard, Herve
    Montassier, Mickael
    Raspaud, Andre
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (10) : 1104 - 1110