共 50 条
Calderon-Zygmund estimates in generalized Orlicz spaces
被引:25
|作者:
Hasto, Peter
[1
,2
]
Ok, Jihoon
[3
,4
]
机构:
[1] Univ Turku, Dept Math & Stat, FI-20014 Turku, Finland
[2] Univ Oulu, Dept Math, FI-90014 Oulu, Finland
[3] Kyung Hee Univ, Dept Appl Math, Yongin 17104, South Korea
[4] Kyung Hee Univ, Inst Nat Sci, Yongin 17104, South Korea
基金:
新加坡国家研究基金会;
关键词:
Second order equations;
Generalized Orlicz spaces;
Calderon-Zygmund estimates;
ELLIPTIC-EQUATIONS;
PARABOLIC EQUATIONS;
MEASURABLE COEFFICIENTS;
VARIABLE EXPONENT;
MAXIMAL OPERATOR;
REGULARITY;
FUNCTIONALS;
SOBOLEV;
MINIMIZERS;
VMO;
D O I:
10.1016/j.jde.2019.03.026
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We establish the W-2,W-phi(.)-solvability of the linear elliptic equations in non-divergence form under a suitable, essentially minimal, condition of the generalized Orlicz function phi(.) = phi(x, t), by deriving Calderon-Zygmund type estimates. The class of generalized Orlicz spaces we consider here contains as special cases classical Lebesgue and Orlicz spaces, as well as non-standard growth cases like variable exponent and double phase growth. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:2792 / 2823
页数:32
相关论文