Calderon-Zygmund estimates in generalized Orlicz spaces

被引:25
|
作者
Hasto, Peter [1 ,2 ]
Ok, Jihoon [3 ,4 ]
机构
[1] Univ Turku, Dept Math & Stat, FI-20014 Turku, Finland
[2] Univ Oulu, Dept Math, FI-90014 Oulu, Finland
[3] Kyung Hee Univ, Dept Appl Math, Yongin 17104, South Korea
[4] Kyung Hee Univ, Inst Nat Sci, Yongin 17104, South Korea
基金
新加坡国家研究基金会;
关键词
Second order equations; Generalized Orlicz spaces; Calderon-Zygmund estimates; ELLIPTIC-EQUATIONS; PARABOLIC EQUATIONS; MEASURABLE COEFFICIENTS; VARIABLE EXPONENT; MAXIMAL OPERATOR; REGULARITY; FUNCTIONALS; SOBOLEV; MINIMIZERS; VMO;
D O I
10.1016/j.jde.2019.03.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the W-2,W-phi(.)-solvability of the linear elliptic equations in non-divergence form under a suitable, essentially minimal, condition of the generalized Orlicz function phi(.) = phi(x, t), by deriving Calderon-Zygmund type estimates. The class of generalized Orlicz spaces we consider here contains as special cases classical Lebesgue and Orlicz spaces, as well as non-standard growth cases like variable exponent and double phase growth. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:2792 / 2823
页数:32
相关论文
共 50 条